GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C3

Paper K

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Show that

$$
\begin{equation*}
\int_{1}^{7} \frac{2}{4 x-1} \mathrm{~d} x=\ln 3 . \tag{4}
\end{equation*}
$$

2. Find the set of values of x such that

$$
\begin{equation*}
|3 x+1| \leq|x-2| . \tag{5}
\end{equation*}
$$

3. Find all values of θ in the interval $-180<\theta<180$ for which

$$
\begin{equation*}
\tan ^{2} \theta^{\circ}+\sec \theta^{\circ}=1 \tag{6}
\end{equation*}
$$

4. Solve each equation, giving your answers in exact form.
(i) $\mathrm{e}^{4 x-3}=2$
(ii) $\ln (2 y-1)=1+\ln (3-y)$
5. (i) Prove, by counter-example, that the statement
" $\operatorname{cosec} \theta-\sin \theta>0$ for all values of θ in the interval $0<\theta<\pi$ " is false.
(ii) Find the values of θ in the interval $0<\theta<\pi$ such that

$$
\begin{equation*}
\operatorname{cosec} \theta-\sin \theta=2 \tag{5}
\end{equation*}
$$

giving your answers to 2 decimal places.
6. The curve C has the equation $y=x^{2}-5 x+2 \ln \frac{x}{3}, x>0$.
(i) Show that the normal to C at the point where $x=3$ has the equation

$$
\begin{equation*}
3 x+5 y+21=0 \tag{5}
\end{equation*}
$$

(ii) Find the x-coordinates of the stationary points of C.
7.

The diagram shows the curve $y=\mathrm{f}(x)$ which has a maximum point at $(-45,7)$ and a minimum point at $(135,-1)$.
(i) Showing the coordinates of any stationary points, sketch the curve with equation $y=1+2 \mathrm{f}(x)$.

Given that

$$
\mathrm{f}(x)=A+2 \sqrt{2} \cos x^{\circ}-2 \sqrt{2} \sin x^{\circ}, \quad x \in \mathbb{R}, \quad-180 \leq x \leq 180,
$$

where A is a constant,
(ii) show that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=A+R \cos (x+\alpha)^{\circ},
$$

where $R>0$ and $0<\alpha<90$,
(iii) state the value of A,
(iv) find, to 1 decimal place, the x-coordinates of the points where the curve $y=\mathrm{f}(x)$ crosses the x-axis.
8. The function f is defined by

$$
\mathrm{f}(x) \equiv 3-x^{2}, \quad x \in \mathbb{R}, \quad x \geq 0
$$

(i) State the range of f .
(ii) Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ on the same diagram.
(iii) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.

The function g is defined by

$$
\mathrm{g}(x) \equiv \frac{8}{3-x}, \quad x \in \mathbb{R}, \quad x \neq 3 .
$$

(iv) Evaluate $\mathrm{fg}(-3)$.
(v) Solve the equation

$$
\begin{equation*}
\mathrm{f}^{-1}(x)=\mathrm{g}(x) . \tag{3}
\end{equation*}
$$

9. A curve has the equation $y=(2 x+3) \mathrm{e}^{-x}$.
(i) Find the exact coordinates of the stationary point of the curve.

The curve crosses the y-axis at the point P.
(ii) Find an equation for the normal to the curve at P.

The normal to the curve at P meets the curve again at Q.
(iii) Show that the x-coordinate of Q lies between -2 and -1 .
(iv) Use the iterative formula

$$
x_{n+1}=\frac{3-3 \mathrm{e}^{x_{n}}}{\mathrm{e}^{x_{n}}-2},
$$

with $x_{0}=-1$, to find x_{1}, x_{2}, x_{3} and x_{4}. Give the value of x_{4} to 2 decimal places.
(v) Show that your value for x_{4} is the x-coordinate of Q correct to 2 decimal places.

