GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C3

Paper H

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1.

$$
\mathrm{f}(x)=\frac{4 x-1}{2 x+1}
$$

Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=-2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
2.

The diagram shows the curve with equation $y=\frac{1}{2} \ln 3 x$.
(i) Express the equation of the curve in the form $x=\mathrm{f}(y)$.

The shaded region is bounded by the curve, the coordinate axes and the line $y=1$.
(ii) Find, in terms of π and e, the volume of the solid formed when the shaded region is rotated through four right angles about the y-axis.
3. (i) Use the identity for $\sin (A+B)$ to show that

$$
\begin{equation*}
\sin 3 x \equiv 3 \sin x-4 \sin ^{3} x . \tag{4}
\end{equation*}
$$

(ii) Hence find, in terms of π, the solutions of the equation

$$
\begin{equation*}
\sin 3 x-\sin x=0, \tag{4}
\end{equation*}
$$

for x in the interval $0 \leq x<2 \pi$.
4. The function f is defined by

$$
\mathrm{f}(x) \equiv x^{2}-2 a x, \quad x \in \mathbb{R}
$$

where a is a positive constant.
(i) Showing the coordinates of any points where the graph meets the axes, sketch the graph of $y=|\mathrm{f}(x)|$.

The function g is defined by

$$
\mathrm{g}(x) \equiv 3 a x, \quad x \in \mathbb{R}
$$

(ii) Find $\mathrm{fg}(a)$ in terms of a.
(iii) Solve the equation

$$
\begin{equation*}
\operatorname{gf}(x)=9 a^{3} . \tag{4}
\end{equation*}
$$

5. (i) Find, as natural logarithms, the solutions of the equation

$$
\begin{equation*}
\mathrm{e}^{2 x}-8 \mathrm{e}^{x}+15=0 \tag{3}
\end{equation*}
$$

(ii) Use proof by contradiction to prove that $\log _{2} 3$ is irrational.
6.

$$
\mathrm{f}(x)=2 x^{2}+3 \ln (2-x), \quad x \in \mathbb{R}, \quad x<2
$$

(i) Show that the equation $\mathrm{f}(x)=0$ can be written in the form

$$
\begin{equation*}
x=2-\mathrm{e}^{k x^{2}} \tag{3}
\end{equation*}
$$

where k is a constant to be found.
The root, α, of the equation $\mathrm{f}(x)=0$ is 1.9 correct to 1 decimal place.
(ii) Use the iterative formula

$$
x_{n+1}=2-\mathrm{e}^{k x_{n}^{2}},
$$

with $x_{0}=1.9$ and your value of k, to find α correct to 3 decimal places.
You should show the result of each iteration.
(iii) Solve the equation $\mathrm{f}^{\prime}(x)=0$.
7. (i) Use the identity

$$
\cos (A+B) \equiv \cos A \cos B-\sin A \sin B
$$

to prove that

$$
\begin{equation*}
\cos x \equiv 1-2 \sin ^{2} \frac{x}{2} . \tag{2}
\end{equation*}
$$

(ii) Prove that, for $\sin x \neq 0$,

$$
\begin{equation*}
\frac{1-\cos x}{\sin x} \equiv \tan \frac{x}{2} . \tag{3}
\end{equation*}
$$

(iii) Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\frac{1-\cos x}{\sin x}=2 \sec ^{2} \frac{x}{2}-5
$$

giving your answers to 1 decimal place where appropriate.
8.

$$
\mathrm{f}(x)=x^{2}-2 x+5, \quad x \in \mathbb{R}, \quad x \geq 1
$$

(i) Express $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$, where a and b are constants.
(ii) State the range of f .
(iii) Find an expression for $\mathrm{f}^{-1}(x)$.
(iv) Describe fully two transformations that would map the graph of $y=\mathrm{f}^{-1}(x)$ onto the graph of $y=\sqrt{x}, x \geq 0$.
(v) Find an equation for the normal to the curve $y=\mathrm{f}^{-1}(x)$ at the point where $x=8$.

