GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C3

Paper G

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1.

The diagram shows the curve with equation $y=\ln (2+\cos x), x \geq 0$.
The smallest value of x for which the curve meets the x-axis is a as shown.
(i) Find the value of a.
(ii) Use Simpson's rule with four strips of equal width to estimate the area of the region bounded by the curve in the interval $0 \leq x \leq a$ and the coordinate axes.
2. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow 2-x^{2}, \quad x \in \mathbb{R}, \\
& \mathrm{~g}: x \rightarrow \frac{3 x}{2 x-1}, \quad x \in \mathbb{R}, \quad x \neq \frac{1}{2} .
\end{aligned}
$$

(i) Evaluate fg(2).
(ii) Solve the equation $\operatorname{gf}(x)=\frac{1}{2}$.
3. Find the coordinates of the stationary points of the curve with equation

$$
\begin{equation*}
y=\frac{x-1}{x^{2}-2 x+5} \tag{6}
\end{equation*}
$$

4. (i) Sketch the graph of $y=2+\sec \left(x-\frac{\pi}{6}\right)$ for x in the interval $0 \leq x \leq 2 \pi$.

Show on your sketch the coordinates of any turning points and the equations of any asymptotes.
(ii) Find, in terms of π, the x-coordinates of the points where the graph crosses the x-axis.
5. A curve has the equation $y=\sqrt{3 x+11}$.

The point P on the curve has x-coordinate 3 .
(i) Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
3 x-4 \sqrt{5} y+31=0 \tag{5}
\end{equation*}
$$

The normal to the curve at P crosses the y-axis at Q.
(ii) Find the y-coordinate of Q in the form $k \sqrt{5}$.
6. (i) Express $3 \cos x^{\circ}+\sin x^{\circ}$ in the form $R \cos (x-\alpha)^{\circ}$ where $R>0$ and $0<\alpha<90$.
(ii) Using your answer to part (a), or otherwise, solve the equation

$$
6 \cos ^{2} x^{\circ}+\sin 2 x^{\circ}=0,
$$

for x in the interval $0 \leq x \leq 360$, giving your answers to 1 decimal place where appropriate.
7. The finite region R is bounded by the curve with equation $y=x+\frac{2}{x}$, the x-axis and the lines $x=1$ and $x=4$.
(i) Find the exact area of R.

The region R is rotated completely about the x-axis.
(ii) Find the volume of the solid formed, giving your answer in terms of π.
8. The population in thousands, P, of a town at time t years after $1^{\text {st }}$ January 1980 is modelled by the formula

$$
P=30+50 \mathrm{e}^{0.002 t}
$$

Use this model to estimate
(i) the population of the town on $1^{\text {st }}$ January 2010,
(ii) the year in which the population first exceeds 84000 .

The population in thousands, Q, of another town is modelled by the formula

$$
Q=26+50 \mathrm{e}^{0.003 t}
$$

(iii) Show that the value of t when $P=Q$ is a solution of the equation

$$
\begin{equation*}
t=1000 \ln \left(1+0.08 \mathrm{e}^{-0.002 t}\right) \tag{3}
\end{equation*}
$$

(iv) Use the iterative formula

$$
t_{n+1}=1000 \ln \left(1+0.08 \mathrm{e}^{-0.002 t_{n}}\right)
$$

with $t_{0}=50$ to find t_{1}, t_{2} and t_{3} and hence, the year in which the populations of these two towns will be equal according to these models.

Turn over

9.

The diagram shows the curve with equation $y=\mathrm{f}(x)$. The curve crosses the axes at $(p, 0)$ and $(0, q)$ and the lines $x=1$ and $y=2$ are asymptotes of the curve.
(a) Showing the coordinates of any points of intersection with the axes and the equations of any asymptotes, sketch on separate diagrams the graphs of

$$
\begin{align*}
& \text { (i) } y=|\mathrm{f}(x)|, \tag{2}\\
& \text { (ii) } y=2 \mathrm{f}(x+1) .
\end{align*}
$$

Given also that

$$
\mathrm{f}(x) \equiv \frac{2 x-1}{x-1}, \quad x \in \mathbb{R}, \quad x \neq 1
$$

(b) find the values of p and q,
(c) find an expression for $\mathrm{f}^{-1}(x)$.

