GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C3

Paper F

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Evaluate

$$
\begin{equation*}
\int_{2}^{6} \sqrt{3 x-2} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

2. Differentiate each of the following with respect to x and simplify your answers.
(i) $\frac{6}{\sqrt{2 x-7}}$
(ii) $x^{2} \mathrm{e}^{-x}$
3. (i) Prove the identity

$$
\begin{equation*}
\sqrt{2} \cos (x+45)^{\circ}+2 \cos (x-30)^{\circ} \equiv(1+\sqrt{3}) \cos x^{\circ} \tag{4}
\end{equation*}
$$

(ii) Hence, find the exact value of $\cos 75^{\circ}$ in terms of surds.
4.

$$
\mathrm{f}(x)=x^{2}+5 x-2 \sec x, \quad x \in \mathbb{R}, \quad-\frac{\pi}{2}<x<\frac{\pi}{2} .
$$

(i) Show that the equation $\mathrm{f}(x)=0$ has a root, α, such that $1<\alpha<1.5$
(ii) Show that a suitable rearrangement of the equation $\mathrm{f}(x)=0$ leads to the iterative formula

$$
\begin{equation*}
x_{n+1}=\cos ^{-1}\left(\frac{2}{x_{n}^{2}+5 x_{n}}\right) \tag{3}
\end{equation*}
$$

(iii) Use the iterative formula in part (ii) with a starting value of 1.25 to find α correct to 3 decimal places. You should show the result of each iteration.
5. The function f is defined by

$$
\mathrm{f}(x) \equiv 2+\ln (3 x-2), \quad x \in \mathbb{R}, \quad x>\frac{2}{3} .
$$

(i) Find the exact value of $\mathrm{ff}(1)$.
(ii) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=1$.
(iii) Find an expression for $\mathrm{f}^{-1}(x)$.
6. (i) Sketch on the same diagram the graphs of $y=|x|-a$ and $y=|3 x+5 a|$, where a is a positive constant.

Show on your diagram the coordinates of any points where each graph meets the coordinate axes.
(ii) Solve the equation

$$
\begin{equation*}
|x|-a=|3 x+5 a| \tag{4}
\end{equation*}
$$

7.

The diagram shows the curve with equation $y=2 x-\mathrm{e}^{\frac{1}{2} x}$.
The shaded region is bounded by the curve, the x-axis and the lines $x=2$ and $x=4$.
(i) Find the area of the shaded region, giving your answer in terms of e.

The shaded region is rotated through four right angles about the x-axis.
(ii) Using Simpson's rule with two strips, estimate the volume of the solid formed.
8. (i) Sketch on the same diagram the graphs of

$$
\begin{equation*}
y=\sin ^{-1} x,-1 \leq x \leq 1 \tag{3}
\end{equation*}
$$

and $\quad y=\cos ^{-1}(2 x),-\frac{1}{2} \leq x \leq \frac{1}{2}$.
Given that the graphs intersect at the point with coordinates (a, b),
(ii) show that $\tan b=\frac{1}{2}$,
(iii) find the value of a in the form $k \sqrt{5}$.
9.

$$
\mathrm{f}(x)=\mathrm{e}^{3 x+1}-2, \quad x \in \mathbb{R} .
$$

(i) State the range of f .

The curve $y=\mathrm{f}(x)$ meets the y-axis at the point P and the x-axis at the point Q.
(ii) Find the exact coordinates of P and Q.
(iii) Show that the tangent to the curve at P has the equation

$$
\begin{equation*}
y=3 \mathrm{e} x+\mathrm{e}-2 \tag{4}
\end{equation*}
$$

(iv) Find to 3 significant figures the x-coordinate of the point where the tangent to the curve at P meets the tangent to the curve at Q.

