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INSTRUCTIONS TO CANDIDATES 
 

• Answer all the questions. 
 

• Give non-exact numerical answers correct to 3 significant figures, unless a different degree 
of accuracy is specified in the question or is clearly appropriate. 

 

• You are permitted to use a graphic calculator in this paper. 
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1. (i) Solve the inequality 
 
        x − 0.2 <  0.03                  [2] 
 
 (ii) Hence, find all integers n such that 
 
        0.95n − 0.2 <  0.03                [3] 
 
 
2.        y 
 
 
 

                   y = 2x x−  
 
 
 
        O          2     x 
 
 

 The diagram shows the curve with equation  y = 2x x− ,  0 ≤ x ≤ 2. 
 
 Find, in terms of π, the volume of the solid formed when the region bounded by the 
 curve and the x-axis is rotated through 360° about the x-axis.          [5] 
 
 
3. Solve, for  0 ≤ y ≤ 360,  the equation 
 
        2 cot2 y° + 5 cosec y° + cosec2 y° = 0.           [6] 
 
 
4. A curve has the equation  x = 1 2y y− . 
 
 (i) Show that 
 

         d
d

y
x
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1 2

1 3
y

y
−

−
.                  [4] 

 
 The point A on the curve has y-coordinate −1. 
 
 (ii) Show that the equation of tangent to the curve at A can be written in the form 
 

        3 x + py + q = 0 
 
  where p and q are integers to be found.               [3] 
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5. The function f is defined by 
 
         f(x) ≡ 4 − ln 3x,   x ∈    ,   x > 0. 
 
 (i) Solve the equation  f(x) = 0.                   [2] 
 
 (ii) Sketch the curve  y = f(x).                    [2] 
 
 The function g is defined by 
 
         g(x) ≡ e2 − x,   x ∈    . 
 
 (iii) Show that 
 

        fg(x) = x + a − ln b, 
 
  where a and b are integers to be found.               [3] 
 
 
6. Find the value of each of the following integrals in exact, simplified form. 
 

 (i)  
0

1−∫ e1 − 2x  dx                        [4] 
 

 (ii) 
4

2∫
23 2x
x
−   dx                       [4] 

 
 
7.         f(x) = 2 + cos x + 3 sin x. 
 
 (i) Express f(x) in the form 
 
        f(x) = a + b cos (x − c) 
 

  where a, b and c are constants,  b > 0  and  0 < c < π2 .          [3] 
 
 (ii) Solve the equation  f(x) = 0  for x in the interval  0 ≤ x ≤ 2π.        [4] 
 
 (iii) Use Simpson’s rule with four strips, each of width 0.5, to find an approximate 

value for 
 

         
2

0∫ f(x)  dx.                   [3] 
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8.         f(x) ≡ 2x2 + 4x + 2,   x ∈    ,   x ≥ −1. 
 
 (i) Express f(x) in the form  a(x + b)2 + c.                [2] 
 
 (ii) Describe fully two transformations that would map the graph of  y = x2,  x ≥ 0 
  onto the graph of  y = f(x).                    [3] 
 
 (iii) Find an expression for f −1(x) and state its domain.            [3] 
 
 (iv) Sketch the graphs of  y = f(x)  and  y = f −1(x)  on the same diagram and state 
  the relationship between them.                  [3] 
 
 
9.      T 
 

      18 
 
 

      12 
 
 
 
 
 

       O  10        60  70         120     t 
 
 

 The diagram shows a graph of the temperature of a room, T °C, at time t minutes. 
 
 The temperature is controlled by a thermostat such that when the temperature falls 

to 12°C, a heater is turned on until the temperature reaches 18°C. The room then 
cools until the temperature again falls to 12°C. 

 
 For t in the interval  10 ≤ t ≤ 60,  T is given by 
 
         T = 5 + Ae−kt, 
 
 where A and k are constants. 
 
 Given that  T = 18  when  t = 10  and that  T = 12  when  t = 60, 
 
 (i) show that  k = 0.0124  to 3 significant figures and find the value of A,     [6] 
 
 (ii) find the rate at which the temperature of the room is decreasing when  t = 20.  [4] 
 
 The temperature again reaches 18°C when  t = 70  and the graph for  70 ≤ t ≤ 120  is a 

translation of the graph for  10 ≤ t ≤ 60. 
 
 (iii) Find the value of the constant B such that for  70 ≤ t ≤ 120 
 
        T = 5 + Be−kt.                   [3] 
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