GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C3

Paper A

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Evaluate

$$
\begin{equation*}
\int_{2}^{15} \frac{1}{\sqrt[3]{2 x-3}} \mathrm{~d} x \tag{5}
\end{equation*}
$$

2.

The diagram shows the curve with equation $y=\frac{3 x+1}{\sqrt{x}}, x>0$.
The shaded region is bounded by the curve, the x-axis and the lines $x=1$ and $x=3$.
Find the volume of the solid formed when the shaded region is rotated through four right angles about the x-axis, giving your answer in the form $\pi(a+\ln b)$, where a and b are integers.
3. A curve has the equation $y=(3 x-5)^{3}$.
(i) Find an equation for the tangent to the curve at the point $P(2,1)$.

The tangent to the curve at the point Q is parallel to the tangent at P.
(ii) Find the coordinates of Q.
4. Giving your answers to 2 decimal places, solve the simultaneous equations

$$
\begin{align*}
& \mathrm{e}^{2 y}-x+2=0 \\
& \ln (x+3)-2 y-1=0 \tag{7}
\end{align*}
$$

5. (i) Find the exact value of x such that

$$
\begin{equation*}
3 \tan ^{-1}(x-2)+\pi=0 . \tag{3}
\end{equation*}
$$

(ii) Solve, for $-\pi<\theta<\pi$, the equation

$$
\begin{equation*}
\cos 2 \theta-\sin \theta-1=0 \tag{5}
\end{equation*}
$$

giving your answers in terms of π.
6. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow 3 x-4, \quad x \in \mathbb{R}, \\
& \mathrm{~g}: x \rightarrow \frac{2}{x+3}, \quad x \in \mathbb{R}, \quad x \neq-3 .
\end{aligned}
$$

(i) Evaluate $\mathrm{fg}(1)$.
(ii) Solve the equation $\operatorname{gf}(x)=6$.
(iii) Find an expression for $\mathrm{g}^{-1}(x)$.
7. (i) Express $2 \sin x^{\circ}-3 \cos x^{\circ}$ in the form $R \sin (x-\alpha)^{\circ}$ where $R>0$ and $0<\alpha<90$.
(ii) Show that the equation

$$
\operatorname{cosec} x^{\circ}+3 \cot x^{\circ}=2
$$

can be written in the form

$$
\begin{equation*}
2 \sin x^{\circ}-3 \cos x^{\circ}=1 \tag{1}
\end{equation*}
$$

(iii) Solve the equation

$$
\operatorname{cosec} x^{\circ}+3 \cot x^{\circ}=2
$$

for x in the interval $0 \leq x \leq 360$, giving your answers to 1 decimal place.
8. \quad The functions f and g are defined for all real values of x by

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow|x-3 a| \\
& \mathrm{g}: x \rightarrow|2 x+a|
\end{aligned}
$$

where a is a positive constant.
(i) Evaluate fg $(-2 a)$.
(ii) Sketch on the same diagram the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$, showing the coordinates of any points where each graph meets the coordinate axes.
(iii) Solve the equation

$$
\begin{equation*}
\mathrm{f}(x)=\mathrm{g}(x) . \tag{4}
\end{equation*}
$$

9.

The diagram shows the curve with equation $y=2 x-3 \ln (2 x+5)$ and the normal to the curve at the point $P(-2,-4)$.
(i) Find an equation for the normal to the curve at P.

The normal to the curve at P intersects the curve again at the point Q with x-coordinate q.
(ii) Show that $1<q<2$.
(iii) Show that q is a solution of the equation

$$
\begin{equation*}
x=\frac{12}{7} \ln (2 x+5)-2 . \tag{2}
\end{equation*}
$$

(iv) Use an iterative process based on the equation above with a starting value of 1.5 to find the value of q to 3 significant figures and justify the accuracy of your answer.

