GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C2

Paper G

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Expand $(3-2 x)^{4}$ in ascending powers of x and simplify each coefficient.
2.

The diagram shows the curve with equation $y=2^{x}$.
Use the trapezium rule with four intervals, each of width 1 , to estimate the area of the shaded region bounded by the curve, the x-axis and the lines $x=-2$ and $x=2$.
3. (i) Given that

$$
5 \cos \theta-2 \sin \theta=0
$$

show that $\tan \theta=2.5$
(ii) Solve, for $0 \leq x \leq 180$, the equation

$$
5 \cos 2 x^{\circ}-2 \sin 2 x^{\circ}=0,
$$

giving your answers to 1 decimal place.
4. (a) Given that $y=\log _{2} x$, find expressions in terms of y for
(i) $\quad \log _{2}\left(\frac{x}{2}\right)$,
(ii) $\log _{2}(\sqrt{x})$.
(b) Hence, or otherwise, solve the equation

$$
\begin{equation*}
2 \log _{2}\left(\frac{x}{2}\right)+\log _{2}(\sqrt{x})=8 \tag{3}
\end{equation*}
$$

5.

The diagram shows the sector $O A B$ of a circle, centre O, in which $\angle A O B=2.5$ radians.

Given that the perimeter of the sector is 36 cm ,
(i) find the length $O A$,
(ii) find the perimeter and the area of the shaded segment.
6.

The diagram shows the curve with equation $y=4 x^{\frac{1}{3}}-x, \quad x \geq 0$.
The curve meets the x-axis at the origin and at the point A with coordinates $(a, 0)$.
(i) Show that $a=8$.
(ii) Find the area of the finite region bounded by the curve and the positive x-axis.
7. (a) Evaluate

$$
\begin{equation*}
\sum_{r=10}^{30}(7+2 r) \tag{4}
\end{equation*}
$$

(b) (i) Write down the formula for the sum of the first n positive integers.
(ii) Using this formula, find the sum of the integers from 100 to 200 inclusive.
(iii) Hence, find the sum of the integers between 300 and 600 inclusive which are divisible by 3 .
8. The first three terms of a geometric series are $(x-2),(x+6)$ and x^{2} respectively.
(i) Show that x must be a solution of the equation

$$
\begin{equation*}
x^{3}-3 x^{2}-12 x-36=0 \tag{I}
\end{equation*}
$$

(ii) Verify that $x=6$ is a solution of equation (I) and show that there are no other real solutions.

Using $x=6$,
(iii) find the common ratio of the series,
(iv) find the sum of the first eight terms of the series.
9. (i) Evaluate

$$
\int_{1}^{3}(3-\sqrt{x})^{2} d x
$$

giving your answer in the form $a+b \sqrt{3}$, where a and b are integers.
(ii) The gradient of a curve is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+4 x+k
$$

where k is a constant.
Given that the curve passes through the points $(0,-2)$ and $(2,18)$, show that $k=2$ and find an equation for the curve.

