GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper J

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Evaluate $49^{\frac{1}{2}}+8^{\frac{2}{3}}$.
2. Solve the equation

$$
\begin{equation*}
3 x-\frac{5}{x}=2 . \tag{4}
\end{equation*}
$$

3. Find the set of values of x for which
(i) $6 x-11>x+4$,
(ii) $x^{2}-6 x-16<0$.
4. (i) Sketch on the same diagram the graphs of $y=(x-1)^{2}(x-5)$ and $y=8-2 x$.

Label on your diagram the coordinates of any points where each graph meets the coordinate axes.
(ii) Explain how your diagram shows that there is only one solution, α, to the equation

$$
\begin{equation*}
(x-1)^{2}(x-5)=8-2 x . \tag{1}
\end{equation*}
$$

(iii) State the integer, n, such that

$$
\begin{equation*}
n<\alpha<n+1 . \tag{1}
\end{equation*}
$$

5.

$$
\mathrm{f}(x)=x^{2}-10 x+17
$$

(a) Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$.
(b) State the coordinates of the minimum point of the curve $y=\mathrm{f}(x)$.
(c) Deduce the coordinates of the minimum point of each of the following curves:

$$
\begin{align*}
& \text { (i) } y=\mathrm{f}(x)+4, \tag{2}\\
& \text { (ii) } y=\mathrm{f}(2 x) . \tag{2}
\end{align*}
$$

6. The points P, Q and R have coordinates $(-5,2),(-3,8)$ and $(9,4)$ respectively.
(i) Show that $\angle P Q R=90^{\circ}$.

Given that P, Q and R all lie on a circle,
(ii) find the coordinates of the centre of the circle,
(iii) show that the equation of the circle can be written in the form

$$
x^{2}+y^{2}-4 x-6 y=k
$$

where k is an integer to be found.
7. The straight line l_{1} has gradient $\frac{3}{2}$ and passes through the point $A(5,3)$.
(i) Find an equation for l_{1} in the form $y=m x+c$.

The straight line l_{2} has the equation $3 x-4 y+3=0$ and intersects l_{1} at the point B.
(ii) Find the coordinates of B.
(iii) Find the coordinates of the mid-point of $A B$.
(iv) Show that the straight line parallel to l_{2} which passes through the mid-point of $A B$ also passes through the origin.
8.

The diagram shows the curve with equation $y=2+3 x-x^{2}$ and the straight lines l and m.

The line l is the tangent to the curve at the point A where the curve crosses the y-axis.
(i) Find an equation for l.

The line m is the normal to the curve at the point B.
Given that l and m are parallel,
(ii) find the coordinates of B.
9. The curve C has the equation

$$
y=3-x^{\frac{1}{2}}-2 x^{-\frac{1}{2}}, x>0 .
$$

(i) Find the coordinates of the points where C crosses the x-axis.
(ii) Find the exact coordinates of the stationary point of C.
(iii) Determine the nature of the stationary point.
(iv) Sketch the curve C.

