GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper I

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Solve the inequality

$$
\begin{equation*}
x(2 x+1) \leq 6 . \tag{4}
\end{equation*}
$$

2. Differentiate with respect to x

$$
\begin{equation*}
3 x^{2}-\sqrt{x}+\frac{1}{2 x} . \tag{4}
\end{equation*}
$$

3. The straight line l has the equation $x-2 y=12$ and meets the coordinate axes at the points A and B.

Find the distance of the mid-point of $A B$ from the origin, giving your answer in the form $k \sqrt{5}$.
4. (i) By completing the square, find in terms of the constant k the roots of the equation

$$
\begin{equation*}
x^{2}+2 k x+4=0 . \tag{4}
\end{equation*}
$$

(ii) Hence find the exact roots of the equation

$$
\begin{equation*}
x^{2}+6 x+4=0 \tag{2}
\end{equation*}
$$

5. The curve with equation $y=\sqrt{8 x}$ passes through the point A with x-coordinate 2 .

Find an equation for the tangent to the curve at A.
6.

$$
\mathrm{f}(x)=x^{\frac{3}{2}}-8 x^{-\frac{1}{2}}
$$

(i) Evaluate $\mathrm{f}(3)$, giving your answer in its simplest form with a rational denominator.
(ii) Solve the equation $\mathrm{f}(x)=0$, giving your answers in the form $k \sqrt{2}$.
7. Solve the simultaneous equations

$$
\begin{align*}
& x-3 y+7=0 \\
& x^{2}+2 x y-y^{2}=7 \tag{7}
\end{align*}
$$

8.

The diagram shows the circle with equation $x^{2}+y^{2}-2 x-18 y+73=0$ and the straight line with equation $y=2 x-3$.
(i) Find the coordinates of the centre and the radius of the circle.
(ii) Find the coordinates of the point on the line which is closest to the circle.
9.

$$
\mathrm{f}(x)=2 x^{2}+3 x-2 .
$$

(i) Solve the equation $\mathrm{f}(x)=0$.
(ii) Sketch the curve with equation $y=\mathrm{f}(x)$, showing the coordinates of any points of intersection with the coordinate axes.
(iii) Find the coordinates of the points where the curve with equation $y=\mathrm{f}\left(\frac{1}{2} x\right)$ crosses the coordinate axes.

When the graph of $y=\mathrm{f}(x)$ is translated by 1 unit in the positive x-direction it maps onto the graph with equation $y=a x^{2}+b x+c$, where a, b and c are constants.
(iv) Find the values of a, b and c.
10. The curve with equation $y=(2-x)(3-x)^{2}$ crosses the x-axis at the point A and touches the x-axis at the point B.
(i) Sketch the curve, showing the coordinates of A and B.
(ii) Show that the tangent to the curve at A has the equation

$$
\begin{equation*}
x+y=2 . \tag{6}
\end{equation*}
$$

Given that the curve is stationary at the points B and C,
(iii) find the exact coordinates of C.

