GCE Examinations Advanced / Advanced Subsidiary

Core Mathematics C1

Paper I Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. Solve the inequality

$$x(2x+1) \le 6. \tag{4}$$

2. Differentiate with respect to *x*

$$3x^2 - \sqrt{x} + \frac{1}{2x}.$$
 [4]

3. The straight line *l* has the equation x - 2y = 12 and meets the coordinate axes at the points *A* and *B*.

Find the distance of the mid-point of *AB* from the origin, giving your answer in the form $k\sqrt{5}$. [6]

4. (i) By completing the square, find in terms of the constant k the roots of the equation

$$x^2 + 2kx + 4 = 0.$$
 [4]

(ii) Hence find the exact roots of the equation

$$x^2 + 6x + 4 = 0.$$
 [2]

5. The curve with equation $y = \sqrt{8x}$ passes through the point *A* with *x*-coordinate 2.

Find an equation for the tangent to the curve at *A*. [6]

$$f(x) = x^{\frac{3}{2}} - 8x^{-\frac{1}{2}}.$$

- (i) Evaluate f(3), giving your answer in its simplest form with a rational denominator. [3]
- (*ii*) Solve the equation f(x) = 0, giving your answers in the form $k\sqrt{2}$. [4]
- 7. Solve the simultaneous equations

$$x - 3y + 7 = 0$$

$$x^{2} + 2xy - y^{2} = 7$$
 [7]

y $x^2 + y^2 - 2x - 18y + 73 = 0$ y = 2x - 30 х

The diagram shows the circle with equation $x^2 + y^2 - 2x - 18y + 73 = 0$ and the straight line with equation y = 2x - 3.

- (i) Find the coordinates of the centre and the radius of the circle. [3]
- *(ii)* Find the coordinates of the point on the line which is closest to the circle. [6]

9.

$$f(x) = 2x^2 + 3x - 2.$$

- (i) Solve the equation f(x) = 0.
- Sketch the curve with equation y = f(x), showing the coordinates of any (ii) points of intersection with the coordinate axes.
- (*iii*) Find the coordinates of the points where the curve with equation $y = f(\frac{1}{2}x)$ crosses the coordinate axes. [3]

When the graph of y = f(x) is translated by 1 unit in the positive x-direction it maps onto the graph with equation $y = ax^2 + bx + c$, where a, b and c are constants.

(*iv*) Find the values of a, b and c.

Turn over

[3]

- [2]
 - [2]

10. The curve with equation $y = (2 - x)(3 - x)^2$ crosses the x-axis at the point A and touches the x-axis at the point B.

(i) Sketch the curve, showing the coordinates of A and B .	[3]
--	-----

(ii) Show that the tangent to the curve at *A* has the equation

$$x + y = 2.$$
 [6]

Given that the curve is stationary at the points *B* and *C*,

(iii) find the exact coordinates of *C*.

[4]