GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper G

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Find the value of y such that

$$
\begin{equation*}
4^{y+1}=8^{2 y-1} . \tag{4}
\end{equation*}
$$

2. Express $\sqrt{22.5}$ in the form $k \sqrt{10}$.
3. A circle has the equation

$$
x^{2}+y^{2}+8 x-4 y+k=0,
$$

where k is a constant.
(i) Find the coordinates of the centre of the circle.

Given that the x-axis is a tangent to the circle,
(ii) find the value of k.
4.

$$
\mathrm{f}(x)=4 x-3 x^{2}-x^{3}
$$

(i) Fully factorise $4 x-3 x^{2}-x^{3}$.
(ii) Sketch the curve $y=\mathrm{f}(x)$, showing the coordinates of any points of intersection with the coordinate axes.
5. (i) Find in exact form the coordinates of the points where the curve $y=x^{2}-4 x+2$ crosses the x-axis.
(ii) Find the value of the constant k for which the straight line $y=2 x+k$ is a tangent to the curve $y=x^{2}-4 x+2$.
6. Some ink is poured onto a piece of cloth forming a stain that then spreads.

The area of the stain, $A \mathrm{~cm}^{2}$, after t seconds is given by

$$
A=(p+q t)^{2}
$$

where p and q are positive constants.
Given that when $t=0, A=4$ and that when $t=5, A=9$,
(i) find the value of p and show that $q=\frac{1}{5}$,
(ii) find $\frac{\mathrm{d} A}{\mathrm{~d} t}$ in terms of t,
(iii) find the rate at which the area of the stain is increasing when $t=15$.
7. The curve C has the equation $y=x^{2}+2 x+4$.
(i) Express $x^{2}+2 x+4$ in the form $(x+p)^{2}+q$ and hence state the coordinates of the minimum point of C.

The straight line l has the equation $x+y=8$.
(ii) Sketch l and C on the same set of axes.
(iii) Find the coordinates of the points where l and C intersect.
8. $\mathrm{f}(x) \equiv \frac{(x-4)^{2}}{2 x^{\frac{1}{2}}}, x>0$.
(i) Find the values of the constants A, B and C such that

$$
\begin{equation*}
\mathrm{f}(x)=A x^{\frac{3}{2}}+B x^{\frac{1}{2}}+C x^{-\frac{1}{2}} \tag{3}
\end{equation*}
$$

(ii) Show that

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=\frac{3 x^{2}-8 x-16}{4 x^{\frac{3}{2}}} \tag{5}
\end{equation*}
$$

(iii) Find the coordinates of the stationary point of the curve $y=\mathrm{f}(x)$.
9.

The diagram shows the parallelogram $A B C D$.
The points A and B have coordinates $(-1,3)$ and $(3,4)$ respectively and lie on the straight line l_{1}.
(i) Find an equation for l_{1}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The points C and D lie on the straight line l_{2} which has the equation $x-4 y-21=0$.
(ii) Show that the distance between l_{1} and l_{2} is $k \sqrt{17}$, where k is an integer to be found.
(iii) Find the area of parallelogram $A B C D$.

