GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper F

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. (i) Calculate the discriminant of $2 x^{2}+8 x+8$.
(ii) State the number of real roots of the equation $2 x^{2}+8 x+8=0$.
2. Find the set of values of x for which

$$
\begin{equation*}
(x-1)(x-2)<20 . \tag{4}
\end{equation*}
$$

3. (i) Solve the equation

$$
\begin{equation*}
x^{\frac{3}{2}}=27 . \tag{2}
\end{equation*}
$$

(ii) Express $\left(2 \frac{1}{4}\right)^{-\frac{1}{2}}$ as an exact fraction in its simplest form.
4. Differentiate with respect to x

$$
\begin{equation*}
\frac{6 x^{2}-1}{2 \sqrt{x}} . \tag{5}
\end{equation*}
$$

5.

The diagram shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve has a maximum at $(-3,4)$ and a minimum at $(1,-2)$.

Showing the coordinates of any turning points, sketch on separate diagrams the curves with equations
(i) $y=2 \mathrm{f}(x)$,
(ii) $y=-\mathrm{f}(x)$.
6.

$$
\mathrm{f}(x)=2 x^{2}-4 x+1
$$

(i) Find the values of the constants a, b and c such that

$$
\begin{equation*}
\mathrm{f}(x)=a(x+b)^{2}+c \tag{4}
\end{equation*}
$$

(ii) State the equation of the line of symmetry of the curve $y=\mathrm{f}(x)$.
(iii) Solve the equation $\mathrm{f}(x)=3$, giving your answers in exact form.
7. A curve has the equation

$$
y=x^{3}+a x^{2}-15 x+b,
$$

where a and b are constants.
Given that the curve is stationary at the point $(-1,12)$,
(i) find the values of a and b,
(ii) find the coordinates of the other stationary point of the curve.
8. The circle C has the equation

$$
x^{2}+y^{2}+10 x-8 y+k=0
$$

where k is a constant.
Given that the point with coordinates $(-6,5)$ lies on C,
(i) find the value of k,
(ii) find the coordinates of the centre and the radius of C.

A straight line which passes through the point $A(2,3)$ is a tangent to C at the point B.
(iii) Find the length $A B$ in the form $k \sqrt{3}$.
9. A curve has the equation $y=x+\frac{3}{x}, x \neq 0$.

The point P on the curve has x-coordinate 1 .
(i) Show that the gradient of the curve at P is -2 .
(ii) Find an equation for the normal to the curve at P, giving your answer in the form $y=m x+c$.
(iii) Find the coordinates of the point where the normal to the curve at P intersects the curve again.
10. The straight line l_{1} has equation $2 x+y-14=0$ and crosses the x-axis at the point A.
(i) Find the coordinates of A.

The straight line l_{2} is parallel to l_{1} and passes through the point $B(-6,6)$.
(ii) Find an equation for l_{2} in the form $y=m x+c$.

The line l_{2} crosses the x-axis at the point C.
(iii) Find the coordinates of C.

The point D lies on l_{1} and is such that $C D$ is perpendicular to l_{1}.
(iv) Show that D has coordinates $(5,4)$.
(v) Find the area of triangle $A C D$.

