GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper E

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. (i) Express $\frac{21}{\sqrt{7}}$ in the form $k \sqrt{7}$.
(ii) Express $8^{-\frac{1}{3}}$ as an exact fraction in its simplest form.
2. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when
(i) $y=x-2 x^{2}$,
(ii) $y=\frac{3}{x^{2}}$.
3. (a) Express $x^{2}-10 x+27$ in the form $(x+p)^{2}+q$.
(b) Sketch the curve with equation $y=x^{2}-10 x+27$, showing on your sketch
(i) the coordinates of the vertex of the curve,
(ii) the coordinates of any points where the curve meets the coordinate axes.
4. The straight line l_{1} has gradient 2 and passes through the point with coordinates $(4,-5)$.
(i) Find an equation for l_{1} in the form $y=m x+c$.

The straight line l_{2} is perpendicular to the line with equation $3 x-y=4$ and passes through the point with coordinates $(3,0)$.
(ii) Find an equation for l_{2}.
(iii) Find the coordinates of the point where l_{1} and l_{2} intersect.
5. Given that the equation

$$
4 x^{2}-k x+k-3=0,
$$

where k is a constant, has real roots,
(i) show that

$$
\begin{equation*}
k^{2}-16 k+48 \geq 0 \tag{2}
\end{equation*}
$$

(ii) find the set of possible values of k,
(iii) state the smallest value of k for which the roots are equal and solve the equation when k takes this value.
6. The points P and Q have coordinates $(-2,6)$ and $(4,-1)$ respectively.

Given that $P Q$ is a diameter of circle C,
(i) find the coordinates of the centre of C,
(ii) show that C has the equation

$$
\begin{equation*}
x^{2}+y^{2}-2 x-5 y-14=0 \tag{5}
\end{equation*}
$$

The point R has coordinates $(2,7)$.
(iii) Show that R lies on C and hence, state the size of $\angle P R Q$ in degrees.
7. (i) Describe fully the single transformation that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\mathrm{f}(x-1)$.
(ii) Showing the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes, sketch the graph of $y=\frac{1}{x-1}$.
(iii) Find the x-coordinates of any points where the graph of $y=\frac{1}{x-1}$ intersects the graph of $y=2+\frac{1}{x}$. Give your answers in the form $a+b \sqrt{3}$, where a and b are rational.
8.

The diagram shows the curve C with the equation $y=x^{3}+3 x^{2}-4 x$ and the straight line l.

The curve C crosses the x-axis at the origin, O, and at the points A and B.
(i) Find the coordinates of A and B.

The line l is the tangent to C at O.
(ii) Find an equation for l.
(iii) Find the coordinates of the point where l intersects C again.
9. The curve with equation $y=2 x^{\frac{3}{2}}-8 x^{\frac{1}{2}}$ has a minimum at the point A.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find the x-coordinate of A.

The point B on the curve has x-coordinate 2 .
(iii) Find an equation for the tangent to the curve at B in the form $y=m x+c$.

