For OCR

GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C1

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for using a valid method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

C1 Paper A - Marking Guide

1. $\left(2^{2}\right)^{y+3}=2^{3}$

M1
$2 y+6=3$
M1
$y=-\frac{3}{2}$
A1
(3)
2. $=\frac{2}{3 \sqrt{5}+7} \times \frac{3 \sqrt{5}-7}{3 \sqrt{5}-7}$

M1
$=\frac{6 \sqrt{5}-14}{45-49}=\frac{7}{2}-\frac{3}{2} \sqrt{5}$
M1 A1 (3)
3. (i) $x^{2}+(y-3)^{2}-9-7=0$

M1
\therefore centre $(0,3)$
A1
(ii) $x^{2}+(y-3)^{2}=16 \quad$ M1
\therefore radius $=4$
A1
(4)
4. (i) $=(x+3)^{2}-9+7$ M1
$=(x+3)^{2}-2 \quad \mathrm{~A} 2$
(ii) $(-3,-2) \quad$ B2
(5)
5. $x+y=2 \Rightarrow y=2-x$

M1
sub. into $3 x^{2}-2 x+y^{2}=2$
$3 x^{2}-2 x+(2-x)^{2}=2 \quad$ M1
$2 x^{2}-3 x+1=0 \quad$ A1
$(2 x-1)(x-1)=0 \quad$ M1
$x=\frac{1}{2}, 1 \quad$ A1
$\therefore x=\frac{1}{2}, y=\frac{3}{2}$ or $x=1, y=1 \quad$ M1 A1
6. (i) $3 x-x^{\frac{3}{2}}=0$
$x\left(3-x^{\frac{1}{2}}\right)=0 \quad$ M1
$x=0($ at $O)$ or $x^{\frac{1}{2}}=3$
$x=3^{2}=9 \quad$ M1 A1
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-\frac{3}{2} x^{\frac{1}{2}}$

for SP,	$3-\frac{3}{2} x^{\frac{1}{2}}=0$
$x^{\frac{1}{2}}=2$	M1
$x=4$	A1
$\therefore(4,4)$	A1

(8)
7. (i) $=(-6)^{2}-(4 \times 1 \times 12)=-12$

M1 A1
(ii) 0 real roots

B1
\therefore graph of $y=x^{2}-6 x+12$ doesn't cross the x-axis and coeff. of x^{2} is positive so curve has a minimum which must be above x-axis hence, $x^{2}-6 x+12$ is always positive

$\begin{array}{ll}x^{2}-4 x+4=0 & \text { A1 } \\ (x-2)^{2}=0 & \text { M1 }\end{array}$
repeated root \therefore tangent
A1
(9)
8. (a)

$$
\text { LHS }=(x+1)\left(x^{2}-7 x+12\right)
$$

$$
\begin{aligned}
& =x^{3}-7 x^{2}+12 x+x^{2}-7 x+12 \\
& =x^{3}-6 x^{2}+5 x+12=\text { RHS }
\end{aligned}
$$

(b)

(c) (i)

(ii)

B3

B2 B2
9. (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}+x^{-2}$
$\operatorname{grad}=\frac{1}{2}+2^{-2}=\frac{3}{4}$
(ii) $\quad x=2 \quad \therefore y=\frac{7}{2}$
$y-\frac{7}{2}=\frac{3}{4}(x-2)$
$4 y-14=3 x-6$
$3 x-4 y+8=0$
(iii) at $B, \operatorname{grad}=\frac{3}{4}$
$\begin{aligned} \therefore \quad & \frac{1}{2}+x^{-2}=\frac{3}{4} \\ & x^{2}=4 \\ & x=2(\text { at } A),-2\end{aligned}$
$\therefore B\left(-2, \frac{5}{2}\right)$

M1 A1
M1 A1
B1
M1

A1

M1

A1
A1
(10)
10. (i) $y-4=3(x+6)$

M1
$y=3 x+22$
A1
(ii) at $B, \quad x=0 \quad \therefore y=2 \quad \Rightarrow \quad B(0,2)$

B1
at $C, \quad x-7(3 x+22)+14=0$
$x=-7$
M1
A1
$\therefore C(-7,1)$
A1
(iii) $\operatorname{grad} A B=\frac{2-4}{0-(-6)}=-\frac{1}{3}$
$\operatorname{grad} A C=\frac{1-4}{-7-(-6)}=3$
$\operatorname{grad} A B \times \operatorname{grad} A C=-\frac{1}{3} \times 3=-1$
$\therefore A B$ perp to $A C \therefore \angle B A C=90^{\circ}$
(iv) $A B=\sqrt{(0+6)^{2}+(2-4)^{2}}=\sqrt{36+4}=\sqrt{40}=2 \sqrt{10}$

M1 A1
$A C=\sqrt{(-7+6)^{2}+(1-4)^{2}}=\sqrt{1+9}=\sqrt{10}$
area $=\frac{1}{2} \times 2 \sqrt{10} \times \sqrt{10}=10$

Performance Record - C1 Paper A

Question no.	1	2	3	4	5	6	7	8	9	10	Total
Topic(s)	indices	surds	circle	compl. square	simul. eqn	SP	discrim., roots of quad.	$\begin{array}{\|c\|} \hline \text { cubic, } \\ \text { transform. } \\ \hline \end{array}$	$\begin{gathered} \text { diff., } \\ \text { tangents } \end{gathered}$	straight lines	
Marks	3	3	4	5	7	8	9	9	10	14	72
Student											

