AQA, OCR, Edexcel

A Level Biology

Photosynthesis, Respiration Succession and Nutrient Cycle Answers

Name:

M

M

E

Mathsmadeeasy.co.uk

Total Marks:

M1.		(a) (i) respiration;	1	
		(ii) decomposers; (accept bacteria / fungi)	1	
	(b)	$\frac{87402}{1.7 \times 10^{6}} \times 100 = 5.14 / 5.1\%;$ (correct answer = 2 marks) (principle: energy in producers ÷ energy of light absorbed = 1 mark)	2	
	(c)	release electron(s);	2 max	
	(d)		4	[10]
M2.		(a) (i) Temperature and light;	1	
		 (ii) Increase in temperature causes increase in rate of photosynthesis / uptake of carbon dioxide; 		
		Increase in light / more / medium / high light (intensity) causes increase in rate of photosynthesis / uptake of carbon dioxide;	2	
	(b)	2.75 – 2.81 (mg g⁻¹ hr⁻¹) Accept answers in range 2.75 – 2.81	1	
	(c)	1. Growth will decrease (at higher temperature);		
		2. Rate of respiration will increase at higher temperature;		
		3. Photosynthesis decreases as limited by light / as there is less light;		
		Ignore references to effect of temperature on rate of photosynthesis	3	[7]
M3.(a	a)	 Oxygen produced in light-dependent reaction; The faster (oxygen) is produced, the faster the light-dependent reaction. 	2	

	(b)	 35–36 μmol Oxygen per mg chlorophyll. Correct difference at 500 μmol photons m⁻² s⁻¹ or incorrect difference but division by 4 shown = 1 mark. 2 c) At all light intensities, chloroplasts from mutant plants: 		
		 Have faster production of ATP and reduced NADP; (So) have faster / more light-independent reaction; (So) produce more sugars that can be used in respiration; (So) have more energy for growth; Have faster / more synthesis of new organic materials. 		
		Accept converse points if clear answer relates to non-mutant plants	4 max	[8]
M4.		(a) (i) Cytoplasm (of coll):		
1114.		(a) (i) Cytoplasm (of cell); Accept sarcoplasm/cytosol		
		Accept salcoplashi/cytosol	1	
		(ii) In membrance (aristes (of mitschandris))		
		(ii) In <u>membranes/cristae</u> (of mitochondria); <i>Reject matrix of mitochondria</i>		
		Reject mains of milliononana	1	
	(h)	NO stops uptoko/uss of suursen (bu selle):		
	(b)	NO stops uptake/use of oxygen (by cells);	1	
		Stops (electron transport chain of) respiration;		
		Accept – stops oxidative phosphorylation	1	
		NO changes shape of protein (in chain);	1	
			1	
		Oxygen no longer required as final electron acceptor (however s	tated);	
		Accept – protein denatured or description	1	
			1	
		As oxygen conc. gets lower effect of NO lasts longer, because NO more likely to interact with protein;		
		Reject accepts hydrogen from etc in 3rd marking point		
		point	1	
			3 max	[5]
M5.(a)	1. Equilibrium reached.		
		Accept equilibrate		
		 Allow for expansion / pressure change in apparatus; Allow respiration rate of seeds to stabilise. 		
		Ignore seeds acclimatise		
			3	

b) 1. Optimum temperature / temperature for normal growth of seeds;

	2.	(Opt	imum temperature) for enzymes involved in respiration.	2	
(c)	1. 2. 3.	CO ₂	gen taken up / used by seeds; given out is absorbed by KOH (solution); me / pressure (in B) decreases.	3	
(d)	0.9	975 / 0.9	98.		
(-)			If incorrect, 0.26 × 6 / or incorrect numbers divided by 1.6 for 1 mark	2	[10]
M6. (a)	1.		tion of / hydrogen removed from pyruvate <u>and</u> carbon dioxide ased;		
	2.	Addi	ition of coenzyme A. Accept: NAD reduced for oxidation	2	
(b)	(i)	1.	Change (in shape) of active site / active site moulds around the substrate; <i>Reject: reference to inhibitor</i> <i>Accept: change in tertiary structure affecting active</i> <i>site</i>		
		2.	(Substrate / active site) now <u>complementary</u> . Neutral: references to two active sites	2	
	(ii)	1.	Is a competitive inhibitor / attaches to active site; Neutral: reference to inhibitor forming an enzyme- substrate complex		
		2.	Reduces / prevents enzyme-substrate / E-S complex forming. Accept: Reduces / prevents acetylcoenzyme A binding to enzyme / citrate synthase	2	
(c)	(i)	1.	Regenerates / produces NAD / oxidises reduced NAD;		
		2.	(NAD used) in glycolysis. Accept: description of glycolysis Accept: glycolysis can continue / begin	2	
	(ii)		uvate used) in aerobic respiration / (lactate / lactic acid) is c / harmful / causes cramp / (muscle) fatigue. Accept: (pyruvate) can enter link reaction Accept: reduces cramp / (muscle) fatigue Neutral: 'reduces muscle aches'		

М7.		(a)	Ribulose bisphosphate / RuBP; Accept Ribulose biphosphate or Ribulose diphosphate Accept phonetic spellings Accept any variation in upper or lower case for RuBP	1	
	b)		and reduced NADP are produced in grana / thylakoids / present / both tubes; <i>Must be reduced NADP but accept any alternative which show hydrogen attached to NADP Must be reduced NADP not reduced NAD</i> 1		
	(c)	1. 2.	 4 000; Accept 'same as in (tube) C', but not 'same' on its own Light-dependent reaction does not occur / ATP and reduced NADP are not produced; Accept converse for mark point 2 		
	d)	1.	(Less) GP converted to TP; GP = glycerate 3-phosphate TP = triose phosphate but abbreviations are sufficient	2	
		2.	(Less) TP converted to RuBP; <i>Accept GALP as TP</i>	2	
	(e)	1.	No / less ATP / ATP produced (during electron transport); <i>Must be reduced NADP but accept any alternative</i> <i>which shows hydrogen attached to NADP</i>		
		2.	No / less reduced NADP / reduced NADP produced (during electron transport)	2	[8]
M8 .(a	a)	(i) S (ii)	so it / CO₂ is not a <u>limiting</u> factor (on growth / photosynthesis); Accept: CO₂ is a <u>limiting</u> factor So any difference is due to <u>iron</u> (deficiency);	1	
		(ii)	Accept: <u>iron</u> is the variable Amount of triose phosphate / TP will be similar / same / low (at	1	
		(111)	start);		

1

[9]

Accept: to allow triose phosphate to stabilise / become constant Reject: so all triose phosphate is used up Reject: so no triose phosphate

- (b) 1. (Less) ATP produced; Accept: alternatives for reduced NADP ie NADP with hydrogen / s attached
 - 2. (Less) reduced NADP produced;
 - ATP / reduced NADP produced during light-dependent reaction;
 - 4. (Less) GP to triose phosphate / TP;

(c) 1. Less triose phosphate converted to RuBP; Accept: less triose phosphate so less RuBP

2. CO₂ combines with RuBP;2

M9.(a)

Part of ecosystem	Mean rate of carbon dioxide production / cm³ m ⁻² s ⁻¹	Percentage of total carbon dioxide production measured by the scientists
Leaves of plants	0.032	25.0
Stems and roots of plants	0.051	<u>39.8</u>
Non- photosynthetic soil organisms	0.045	<u>35.2</u>

2 correct = 2 marks;;

Adding rates to get 0.128 = 1;

- If rounded to 40 and 35 in table;
- but working shows decimal points, then award 2 marks
- marks
 - but no working shown, then 1 max

2 max

- (b) 1. Data only include (heterotrophic) soil organisms;
 - 2. Doesn't include animals (above ground) / other (non-soil) organisms;

[9]

1

4

	3.	Does	n't take into account anaerobic respiration; Award points in any combination Accept for 1 mark idea that CO ₂ for leaves doesn't take into account photosynthesis – not told in dark until part (d)	2 max
c)	All th	ree of	following = 2 marks;;	
	Two	of the	m = 1 mark;	
	Volu	me of	carbon dioxide given off	
	(Fror	n knov	wn) area / per m² / m²	
	In a I	known	/ set time Ignore 'amount' / concentration of CO ₂ Accept per second / per unit time	2
(d)	1.	(In th	e light) photosynthesis / in the dark no photosynthesis;	
	2.	· •	ht,) carbon dioxide (from respiration) being used / taken y photosynthesis);	2
(e)	(i)	(Rate	e of respiration) Assume "it" means soil under trees	
		1.	In soil under trees (always) higher; Accept converse for soil not under trees Accept 'in the shade' means under the trees	
		2.	In soil under trees does not rise between 06.00 and 12.00 / in the middle of the day / peaks at 20:00-21.00 / in the evening;	
		3.	In soil not under trees, peaks at about 14:00-15:00 / in middle of day; 2. and 3. No mm grid, so accept 'between 18.00 and 24.00' or 'between 12.00 and 18.00'	2 max
	(ii)	<u>(Betw</u>	veen 06.00 and 12.00, (No Mark))	
		Resp	iration higher in soil under tree, (No mark) Do not mix and match mark points No list rule	
		1.	Tree roots carry out (a lot of) respiration;	
		2.	More / there are roots under tree; Accept converse for soil not under trees	

		OR		
		3. More food under trees;		
		 So more active / greater mass of / more organisms (carrying out respiration); Accept converse for soil not under trees 		
		OR		
		Soil not under trees respiration increases (No mark)		
		5. Soil in sunlight gets warmer;		
		6. Enzymes (of respiration) work faster; Accept converse for soil under trees	2 max	
(f)	(i)	1. Photosynthesis produces sugars;		
		2. Sugars moved to roots; Do not penalise named sugars other than sucrose		
		3. (Sugars) are used / required for respiration;	2 max	
	(ii)	Takes time to move sugars to roots; Look for movement idea in (i) – can carry forward to (ii)	1	[15]
M10.	(a) Y =	X = Carbon dioxide; Acetyl coenzyme A; (ACCEPT Acetyl CoA)		
		Z = Water;	3	
(b)	(i)	Cytoplasm;	0	
(-)	(-)		1	
	ii)	Mitochondrion; (IGNORE named part)	1	
(c)	<u>On</u>	the diagram:		
	(i)	'A' (ATP used) – <u>between</u> glucose and triose phosphate;	1	
	(ii)	' B ' <u>Any two from</u> :		
		(ATP produced) – between triose phosphate and pyruvate; in Krebs cycle; from electron carriers		

(to right of bracket & not below grey box);

max 2

(d) Any three from:

Source of energy / of phosphate; Active transport; Phagocytosis / endo- / exocytosis / pinocytosis; Bile production; Cell division / mitosis; Synthesis of: glycogen; protein / enzymes; DNA / RNA; lipid / cholesterol; urea;

max 3

(e) <u>Any four from</u>: Forms lactate; [extras $-C_2H_5OH / CO_2 - CANCEL$]

Use of reduced NAD / NADH;

Regenerates NAD;

NAD can be re-used to oxidise more respiratory substrate / correct e.g. / allows glycolysis to continue; Can still release energy / form ATP when oxygen in short supply / when no oxygen;

max 4

[15]

- **M11.**(a) 1. No aerobic respiration / electron transfer / oxidative phosphorylation; *Reject reference to anaerobic respiration.*
 - (Because) no (respiratory) substrate / nothing to respire; Reject idea of 'little' or 'less' – this would result in a change in oxygen concentration. Accept the idea of no residual respiratory substrate in the mitochondria.

2

- (b) (i) (Oxygen concentration falls because)
 - Aerobic respiration (uses oxygen); Accept 'oxidative phosphorylation / electron transfer takes place'.
 - 2. Oxygen is terminal / electron acceptor;
 - (oxygen combines with) protons / H⁺ and electrons / e⁻ to form water / H₂O;

		All aspects are required to gain mark.	2 max	
	(ii)	Phosphate (ions) / inorganic <u>phosphate</u> / P₁; Reject 'phosphorus' or 'P'. Accept 'PO₄'.	1	
(c)	1. cons	Oxygen concentration continues to fall in plants but stays tant in animals;	I	
		For 'plants' accept 'line R to T', for 'animals' accept 'line R to S'. MP1 and MP2. Accept answers in terms of 'use' of		
		oxygen rather than change in concentration.		
	2.	(Oxygen concentration) falls more slowly in plants than before cyanide added;		
	3.	(Because aerobic) respiration continues in plant (mitochondria); Accept (because aerobic) respiration stops in animal (mitochondria).		
	4.	(Because) electron transfer / oxidative phosphorylation continues in plant (mitochondria);		
		Accept (because) electron transfer stops in animal (mitochondria).		
		Accept for one additional mark		
		(up to 4 max) use of Resource A i.e: idea that plant cytochrome oxidase is (more) resistant to cyanide OR		
		idea that animal cytochrome oxidase not resistant to cyanide.		
			4	[9]
M12. (a)	(i)	Unit of energy / mass, per area, per year.	1	
	(ii)	 Less light / more shading / more competition for light; Neutral: references to animals 		
		2. Reduced photosynthesis.		
		Accept: no photosynthesis	2	
(b)	1. 2.	Pioneer species; Change in abiotic conditions / less hostile / more habitats / niches;		
		Accept: named abiotic change or example of change e.g. formation of soil / humus / organic matter / increase in nutrients		
		Neutral: reference to change in environment unqualified		

			Neutral: more hospitable / habitable / homes / shelters		
		3.	Increase in number / amount / diversity of species / plants / animals.		
			Accept: other / new species (colonise)	3	
	(c)	1. 2.	Net productivity = gross productivity minus respiratory loss; Decrease in gross productivity / photosynthesis / increase in respiration.	2	
	(d)	1. 2.	Conserving / protecting habitats / niches; Conserving / protecting (endangered) species / maintains / increases (bio) diversity;		
		3. 4. 5.	Reduces global warming / greenhouse effect / climate change / remove / take up carbon dioxide; Source of medicines / chemicals / wood; Reduces erosion / eutrophication.		
		•	Accept: tourism / aesthetics / named recreational		
			activity	1 max	[9]
M13.		(a)	(i) dissolve (in soil water) / run-off / leaching; <i>reject nitrogen dissolving.</i>	1	
		(ii)	insoluble / less soluble; (molecules) require breaking down / slow release; 2		
	(b)	block	eased growth / algal bloom; ks light; less photosynthesis; ks die;		
		incre bacte	ase in decomposers / bacteria; <i>ignore growth of bacteria</i> eria respire; oxygen; 4 max [7]		
M14.	(a)	1. 2.	To kill any fungus / bacteria on surface of seeds or in soil; So only the added fungus has any effect. 2		
	(b)	So th	nat only nitrate or ammonia / type of fertiliser affects growth 1		
	(c)	1. 2.	So that effects of nitrate or ammonium alone could be seen; So that effects of fungus can be seen. 2		
	(d)	1. 2.	Weigh samples at intervals during drying; To see if weighings became constant (by 3 days). 2		
	(e)	With 1. 2.	live fungus – showing effects of the fungus: Fungus increases growth of roots and shoots in both; Produces greater growth with nitrate.		
		With	heat-treated fungus – showing effects of fertiliser:		

- 3. Similar dry masses for roots and shoots;
- 4. (Probably) no significant difference because SDs overlap. 4
- (f) 1. Dry mass measures / determines increase in biological / organic material;
 - 2. Water content varies. 2
- g) 1. Fungus with nitrate-containing fertiliser gave largest shoot: root ratio;
 - 2. And largest dry mass of shoot;
 - 3. 6.09:1 compared with ammonium-containing fertiliser 4.18:1 2 max [15]
- M15. (a) Nitrification; Accept nitrifying. Do not accept nitrogen fixing. 1
 - (b) 1. Uptake (by roots) involves active transport; Reject all references to bacteria
 - 2. Requires ATP / aerobic respiration; 2
 - c) (i) 1. Not enough time / fast flow washes bacteria away; "Not enough time for bacteria to convert all the ammonia to nitrate" gains 2 marks
 - (Not all / less) ammonia converted to nitrate / less nitrification; 2
 - (ii) 1. Algal bloom / increase in algae blocks light / plants / algae die;
 - Decomposers / saprobionts / bacteria break down dead plant materials;
 - Bacteria / decomposers / saprobionts use up oxygen in respiration / increase BOD causing fish to die;
 Accept alternatives such as microbes / saprophytes. 3 [8]
- M16.(a) (i) 1. Amino acid / protein / enzyme / urea / nucleic acid / chlorophyll / DNA / RNA / / ATP / ADP / AMP / NAD / NADP;
 - DNA / RNA / nucleic acid / ATP / ADP / AMP / NADP / TP / GP / RuBP / phospholipids;
 and 2. Accept any named equivalent examples e.g. nucleotides. Neutral: ammonia / nitrite / nitrate / phosphate.
- 2
- (ii) 1. Saprobiotic (microorganisms / bacteria) break down remains / dead material / protein / DNA into ammonia / ammonium; Accept: saprobionts / saprophytes / saprotrophs Neutral: decomposer

		 Ammonia / ammonium ions into nitrite and then into nitrate; Allow correct chemical symbols. Accept: correct answers which use incorrect bacteria e.g. nitrogen-fixing but then reject m.p. 3. 		
		3. (By) Nitrifying bacteria / nitrification;	3	
(b)	1.	Nitrate / phosphate / named ion / nutrients for growth of / absorbed / used by plants / algae / producers;		
	2.	More producers / consumers / food so more fish / fish reproduce more / fish grow more / fish move to area; <i>Must have idea of more plants related to some</i> <i>increase in fish.</i>	2	[7]
M17. (a)	R.		1	[.]
(b)	1.	Protein / amino acids broken down (to ammonium ions / ammonia); Accept: nucleic acids / RNA / DNA / urea / any named nitrogen containing compound as an alternative to protein / amino acids Accept: saprophytes / saprotrophs	I	
	2.	By saprobionts / saprobiotic (microorganisms). Neutral: decomposers Reject: answers where incorrect type of bacteria given as saprobionts e.g. Nitrogen fixing bacteria	2	
c)	1.	(Fertility increased as) more nitrate formed / less nitrate removed / broken down; <i>Accept: Nitrate remains</i>		
	2.	Less / no denitrification / process P is decreased / fewer denitrifying bacteria. <i>Accept: more nitrification / more nitrifying bacteria /</i> <i>process R is increased</i>	2	
(d)	1.	Grow crops / plants with nitrogen-fixing (bacteria); Accept: grow legumes / named example e.g. peas, beans, clover Accept: <u>fallow</u> year Accept: use different amounts of ions / nutrients		
	2.	(Different crops use) different minerals / salts / nutrients / ions (from the soil);		

3. (Different crops have) different pests / pathogens / diseases.

2 max