

GCSE (9–1) Mathematics J560/05 Paper 5 (Higher Tier) Practice Paper

Date – Morning/Afternoon

Time allowed: 1 hour 30 minutes

You may use:

- · Geometrical instruments
- · Tracing paper

Do not use:

· A calculator

First name			
Last name			
Centre	Candidate		

INSTRUCTIONS

- Use black ink. You may use an HB pencil for graphs and diagrams.
- · Complete the boxes above with your name, centre number and candidate number.
- · Answer all the questions.
- · Read each question carefully before you start your answer.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- · This document consists of 20 pages.

Answer all the questions

1 ABCD is a trapezium. AD = BC.

Not to scale

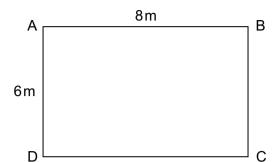
Work out

(a) angle EBC,

(a)		0	[1]
-----	--	---	----	---

(b) angle ADE.

(b)	0	[2]
-----	---	-----


2 The angles in a triangle are in the ratio 1 : 2 : 3. Neil says

This is a right-angled triangle.

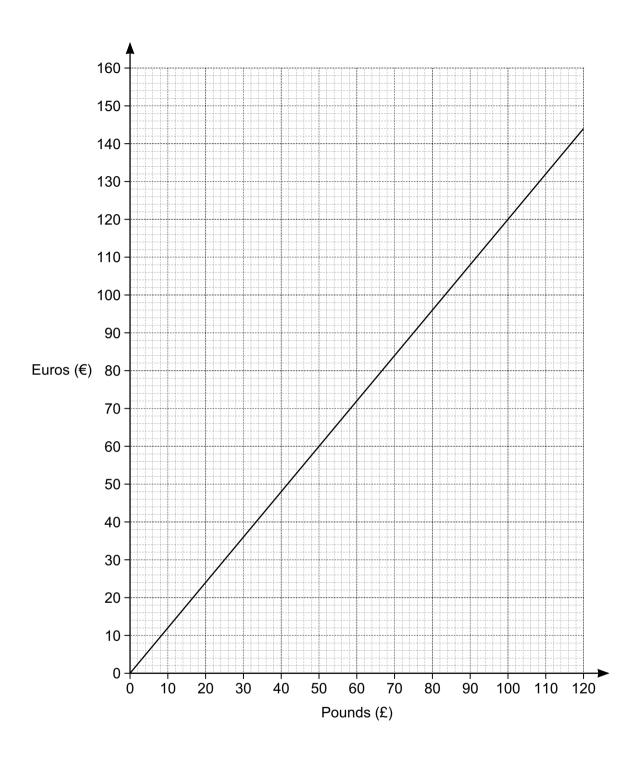
Is Neil correct? Show your reasoning.

.....[3]

3 ABCD is a rectangle.

Not to scale

(a) Sunita calculates the length of AC, but gets it wrong.


$$8^{2} - 6^{2} = AC^{2}$$

 $\sqrt{28} = AC$
 $\sqrt{28} = 5.29 \text{ or } -5.29$
 $AC = 5.29$

Explain what Sunita has done wrong.

F 4 7
111

(b) Calculate the length of AC.

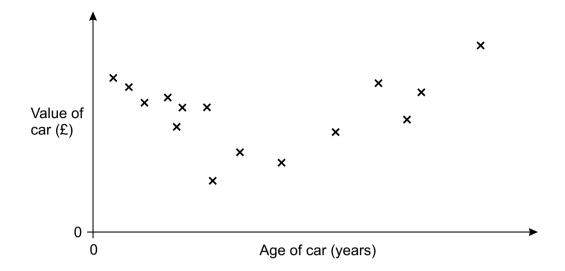
4 This is a conversion graph between pounds and euros.

(a) Convert £36 into euros.

(a) €[1]

(b) (i) Convert €400 into pounds.

		(b)(i) £[3]
		(ii) State an assumption that you have made in working out your answer to part (b)(i).
		[1]
	(c)	Explain how the graph shows that the number of euros is directly proportional to the number of pounds.
		[2]
5	Kan	nile sells sandwiches.
	In J	May, she sold 400 sandwiches. une, Kamile sold 20% more sandwiches than in May. uly, Kamile sold 15% fewer sandwiches than in June.
	Cal	culate the percentage change in her sales from May to July.
		% [5]


6 This is a square.

cale	Not to so	4(x - 2) cm
	(5x - 20) cm	
	(5 <i>x</i> – 20) cm	

Work out the length of the side of the square.

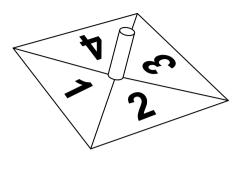
	r <i>e</i> 1
 CIII	[၁]

7 This scatter graph shows the values of 15 sports cars plotted against their ages.

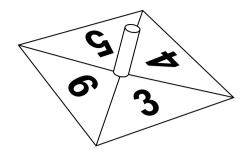
(a) (i) Lewis thinks that there is **no correlation** between the ages and values of these cars.

Is Lewis correct?			
Give a reason for you	ır answer.		
			[0]
		 •••••	[2]

(ii) Sebastian thinks that there is a **relationship** between the ages and values of these cars.


Is Sebastian correct?		
Give a reason for your answer.		
	 	[2]

(b) The car with the highest value is 40 years old.


Estimate the age of the car with the lowest value.

(b) years [2]

8 Andrea has these two fair spinners.

Spinner A

Spinner B

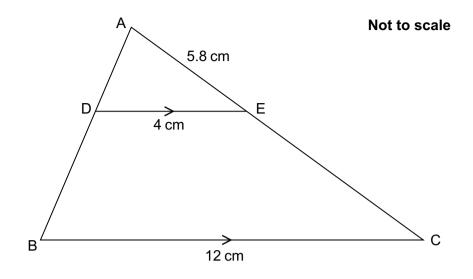
(a) Andrea spins spinner A.

Calculate the probability that Andrea gets 2 with one spin.

(a)[1]

- **(b)** Andrea now spins **both** spinners once. She adds the number she gets on spinner A to the number she gets on spinner B.
 - (i) Andrea works out the probability that the two numbers she gets add to 4. Here is her working.

$$3 + 1 = 4$$


There are 4 outcomes on each spinner making 8 outcomes in total.

The probability of the two numbers adding to 4 is $\frac{2}{8} = \frac{1}{4}$.

Describe these errors.	
	[2]

		(ii) Find the probability that the two numbers she gets as	dd to 6.	
			(b)(ii)[3	3]
9	(a)	Calculate.		
		$2\frac{3}{8} \div 1\frac{1}{18}$ Give your answer as a mixed number in its lowest terms.		
			(a)[3	3]
	(b)	Write $\frac{5}{11}$ as a recurring decimal.	(b)[2	21
	(c)	Write 0.36 as a fraction in its lowest terms.	(5)	-,
			(c)[3	3]

10 In the diagram BC is parallel to DE.

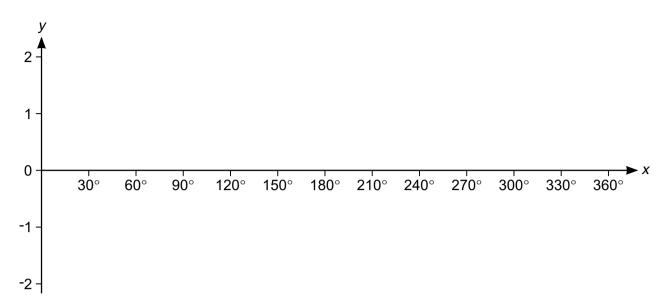
(a) Prove that triangle ABC is similar to triangle ADE.

[3]

(b) Calculate the length of AC.

(b) cm [2]

(c) Find the ratio


area of quadrilateral DBCE : area of triangle ABC.

(c)[3]

11	Eva	luate.		
		,	16 ^{-3/2}	
				[3]
12	(a)	Expand and si	mplify.	
			(x+7)(x+2)	
				(a)[2]
	(b)	Factorise com	pletely.	
			$2x^2 - 6xy$	
				(b)[2]
	(c)	Solve.		
			$x^2 + 5x = 24$	

(c)[3]

13 (a) Sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

[2]

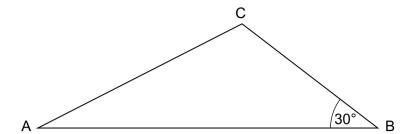
(b) (i) Write down the coordinates of the maximum point of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

(b)(i) (,)	[1	1
1-	, v -	, ,	, , , , , , , , , , , , , , , , , , , ,	 ,	L .	J

(ii) Write down the coordinates of the maximum point of $y = 3 + \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

- (c) One solution to the equation $4 \sin x = k$ is $x = 60^{\circ}$.
 - (i) Find the value of k.

(c)(i)
$$k = \dots [2]$$


(ii) Find another solution for x in the range $0^{\circ} \le x \le 360^{\circ}$.

(ii)
$$x = \dots ^{\circ}$$
 [1]

14	Her	re is a sequence.	2	2√7	14	14√ 7
	(a)	Work out the next t	erm.			
	(b)	Find the <i>n</i> th term.				(a)[1]
	(c)	Find the value of th	ne 21st tern	n divided by th	e 17th term.	(b)[3]
						(c)[2]

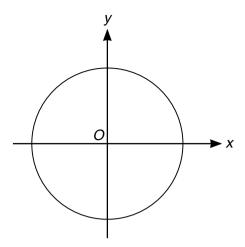
15	Ton	Tony and lan are each buying a new car.					
	The	 ere are three upgrades that they can select: metallic paint (10 different choices) alloy wheels (5 different choices) music system (3 different choices). 					
	(a)	Tony selects all 3 upgrades.					
		Show that there are 150 different possible combinations.	[1]				
	(b)	lan selects 2 of these upgrades.					
		Show that there are 95 different possible combinations.	[3]				

16 Triangle ABC has area 40 cm^2 . AB = 2BC.

Work out the length of BC. Give your answer as a surd in its simplest form.

Not to scale

17 A solid metal sphere has radius 9.8 cm. The metal has a density of 5.023 g/cm³.


Lynne estimates the mass of this sphere to be 20 kg.

Show that this is a reasonable estimate for the mass of the sphere.

[5]

[The volume V of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

18 (a) The diagram shows a circle, centre *O*.

The circumference of the circle is 20π cm.

Find the equation of the circle.

(a)	[4]
-----	-----

(b) The line 10x + py = q is a tangent at the point (5, 4) in another circle with centre (0, 0).

Find the value of p and the value of q.