OCR

A Level

A Level Maths

OCR Core Maths C2 June 2013 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

;	OCR June 13 C2
١.	$\int_{5}^{n} \frac{8}{x} dx = 3 \text{ strips} => h = \frac{11-5}{3} = 2$
	5 8/5 7 8/7 Area = $\frac{1}{2} \times 2 \left\{ (8/5 + 8/11) + 2(8/7 + 8/9) \right\}$ 9 8/9
	11 $8/11 = 6.39 (3 s.f.)$
2 _i .	$\sin\frac{1}{2}x = 0.8 \qquad 0^{\circ} \le x \le 360^{\circ}$
	Let $\phi: \frac{1}{2}x$ $0^{\circ} \leq \phi \leq 180^{\circ}$
,e	Sin \$: 0.8
	P.V. 53.1°
	φ : 53·1°, 126·9°
	x = 106°, 254° (3 s.f.)
	T C
2".	$\sin x = 3\cos x$ ($\div \cos x$)
	tan x = 3
	P.V. 71.6°
	5 / A x · 71.6°, 252° (3 s.f.)
	T / C

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

3i.
$$(2+5x)^6 \cdot 2^6 + ^6C_1 2^5 (5x) + ^6C_2 2^5 (5x)^6 + ...$$

$$: 64 + 940x + 600x^2 + ...$$

3ii. $(3+cx)^2 (2+5x)^6 \times coe \% int = 1 \text{ left 16}$

$$(3+cx)^6 = 9 + 6cx + ... (4 \text{ don't nead } x^6 \text{ terms})$$

$$(9+6cx+...)(64+960x+...)$$

$$x \text{ terms} : 9 \times 940x : 86400 \times 6x \times 64x : 384 cx$$

$$= x (8640+3840c) \cdot 4416 \times 384c : -4224 c$$

$$\vdots \quad 384c + 8640 \cdot 4416 \times 384c : -4224 c$$

$$\vdots \quad 384c - 3x^2 + x + c$$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

14bi. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

15c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

16c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

17c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^2} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^3} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^3} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^3} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}{x^3} + c$

18c. $5x^3 - 6x + 1 dx = \frac{12}$

NB. Inequality Slips when we

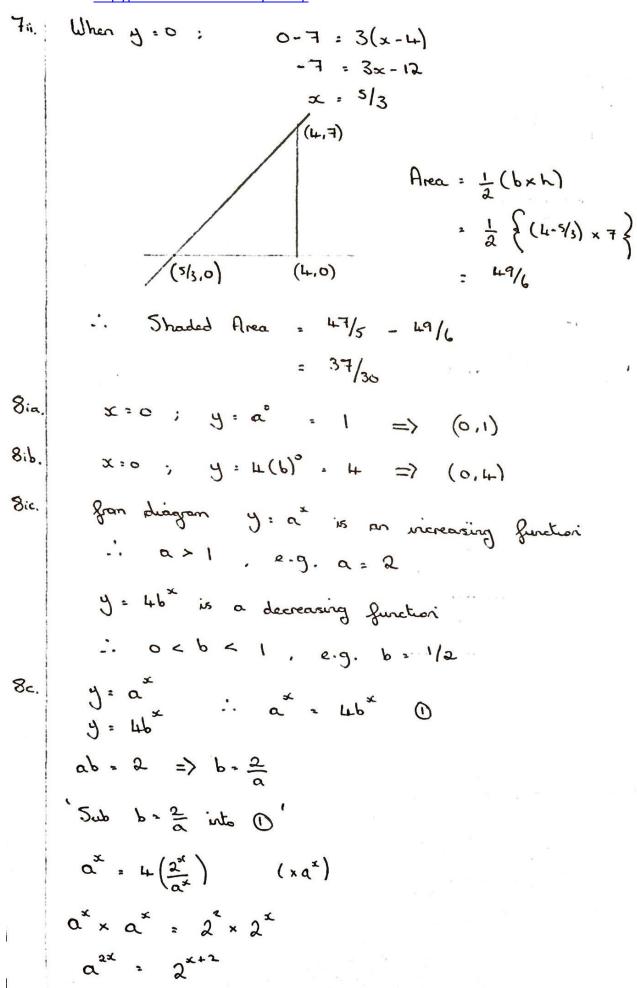
multiply / dunde by a negative

6ii.

$$\frac{6(1-1\cdot3^{N})}{1-1\cdot3}$$
 \leq 1800

71.

$$\int_{1}^{4} x^{2/2} dx$$

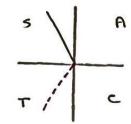

$$\left[\frac{2}{5} \times^{3/2} - \infty\right]^{1}$$

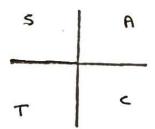
7.

Shaded area . Area under curve - Area of triangle To find the area of the triangle, we need to know where the trangent intersects the x axis.

$$\frac{dy}{dx} = \frac{3}{2} x^{1/2}$$
, at $(4,7)$ $\frac{dy}{dx} = \frac{3}{2} (4)^{1/2} = 3$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.


Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.


8i.
$$\log_2 a^{2x} : \log_2 2^{x+2}$$
 $(2x)\log_2 a : x+2$
 $x(2\log_2 a-1) : 2$
 $x : 2$
 $2\log_2 a-1$

9i. $f(x) : 2x^2 - 7x - 3$
 $f(2) : 2\log_2 a - 1$

9ii. $f(-\frac{1}{2})^3 - 7(-\frac{1}{2}) - 3$
 $f(-\frac{1}{2$

9...

