OCR

A Level

A Level Maths

OCR Core Maths C1 June 2012 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

OCR . June 12 CI

(x-5)(x²+3) - (x + 4)(x-1)

=
$$x^3 + 3x - 5x^5 - 15 - (x^2 + 3x - 4)$$

= $x^3 - 6x^2 - 11$

2: $\sqrt{3} = 7^{1/4}$

2: $\sqrt{3} = 7^{1/4}$

2: $\sqrt{3} = 7^{1/4}$

3: $\sqrt{3} = 7^{1/4} \times (7^2)^{10} = 7^4 \times (7^2)^{10} = 7^4 \times 7^{10} = 7^{10}$

3: $\sqrt{3} \times -5y - 20 = 0$

5y . $\sqrt{3} \times -20$

5y . $\sqrt{3} \times -20$

5y . $\sqrt{3} \times -20$

6x Q x = 0

5y - 20 = 0

5y - 20 = 0

5y - 20 = 0

7' - 20 = 0

9' - -4 (0, -44)

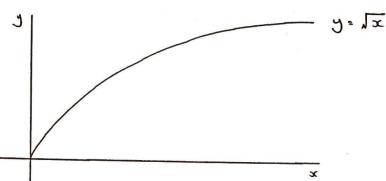
Midpoint . $\left(\frac{20/3 + 0}{2}, \frac{0 + (-4)}{2}\right)$

= $\left(\frac{10}{3}, -2\right)$

$$2x^{2} - 20x + 49$$

$$2\left[x^{2} - 10x\right] + 49$$

$$2\left[(x-5)^{2} - 25\right] + 49$$


$$= 2(x-5)^{2} - 2(25) + 49$$

$$= 2(x-5)^{2} - 1$$

$$= 2(x-5)^2 - 1$$

411.

5:

5 ...

$$\sqrt{x} \rightarrow \sqrt{x-4}$$

 $\sqrt{x} \longrightarrow \sqrt{x-4}$ translation 4 units in the positive x direction

5...

$$\sqrt{x} \longrightarrow \sqrt{\frac{x}{5}}$$

Since $f(x) \rightarrow f(ax)$ stretch s.f $\frac{1}{a}$ in x direction

6.

$$y = \frac{6}{x^2} - 5$$

When
$$x = 2$$
, $y = \frac{6}{2^2} - 5 = -\frac{7}{2}$
so point at $(2, -\frac{7}{2})$

$$\frac{dy}{dx} = -12x^{-3}$$

$$\Delta x = 2$$
, $\Delta y = -\frac{12}{(2)^3} = -\frac{12}{8} = -\frac{3}{2}$

$$y + \frac{7}{2} = \frac{0}{3}(x-2)$$

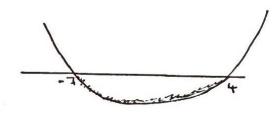
7.
$$x \cdot 6x^{\frac{1}{2}} + 2 = 0$$
 Let $y \cdot x^{\frac{1}{2}}$
 $y' \cdot 6x + 2 = 0$
 $y' \cdot 6x + 2 = 0$
 $(y \cdot 3)' \cdot - 9 + 2 = 0$
 $(y \cdot 3)' \cdot - 3 + \sqrt{3}$
 $x : (3 + \sqrt{3})'$
 $(3 + \sqrt{3})(3 + \sqrt{3}) \cdot 9 + 6\sqrt{3} + 7$; $16 + 6\sqrt{3}$
 $(3 - \sqrt{3})(3 - \sqrt{3}) : 9 - 6\sqrt{3} + 7$; $16 - 6\sqrt{3}$
 $\therefore x : 16 + 6\sqrt{7}$
 $\therefore x : 16 + 6\sqrt{7$

Increasing when dy > 0

Lx3 + 32 > 0

:. x > -2 (from prev. part)

9:


Lex

Area < 112

$$x^{2} + 3x - 28 < 0$$

$$(x+7)(x-4)<0$$

C.V.S x = 4 , x = -7

-7 < x < 4

but a regative length cart exist!

:. 0 < x < 4

Maths Made Easy © Complete Tuition Ltd 2017

10:
$$(x-5)^2 + (y+2)^2 = 25$$

C at $(5,-2)$

radius = $\sqrt{25} = 5$: dismater = 10

10: $(5,-2)$, $(7,2)$

grad. = $\frac{-2-2}{5-7}$: $\frac{-4}{-2}$ = 2
 $y+2 = 2(x-5)$
 $y = 2x-12$

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{16}$ is inside the xircle

10: $\sqrt{20} = 5$: $\sqrt{20} = 25$
 $\sqrt{20} = 25$