

A Level

A Level Maths

OCR Core Maths C1 January 2013 Model Solutions

Name:

Total Marks:

1		OCR -	Jan 13	C1
k.	$x^2 - 6x - 2 = 0$			
	$(x-3)^2 - 9 - 2 = 0$			
	$(x-3)^2 = 11$			
	$x - 3 = \pm \sqrt{11}$			
}	x · 3 ± 11			
bi.	$y = x^2 - 6x - 2$			
	$\frac{dy}{dx} = 2x - 6$			
	at $x = -5$, $\frac{d_9}{dx} = 2(-5) - 6$			
	= -10 -6			
	- 16			
21.	3"=1 1=0			
2	$t^{-3} = 64$			
	$\frac{1}{t^3} = 64$ $t^3 = \frac{1}{61}$ $t = \frac{1}{4}$			
	$E^{3} = \frac{1}{6}$			
	$t = 1 \mu$			
2	$(\Im_{\rho}^{\mu})^{\frac{1}{3}} = \Im$,	
	8 "3 (06)" = 8			
	$2p^{2} = 8$ $p^{2} = 4$			
	$p^2 = 4$			
	$p = \pm 2$			

3i.

$$y = (1+x)(2-x)(3+x)$$
roots at $x = -1/2, -3$
when $x = 0, \quad y = 1 + 2 + 3$

$$= 6$$
So crosses y axis at 6
negative x^{3} so
$$(1+x)(2-x)(3+x) \longrightarrow (1-x)(2+x)(3-x)$$
possible for y axis
Suice x replaced by $-x$

$$y = 2x^{2} - 3x - 5 \implies 2y = 1 + x^{2} - 6x - 10$$

$$10x + 2y + 11 = 0 \implies 2y = -10x - 11$$

$$1x^{2} + 14x^{4} + 1 = 0$$

$$(2x + 1)^{2} = 0$$

$$x = -1/2$$

$$x = -1/2$$

$$x = -1/2$$

$$x = -1/2$$

$$x = -1/2, \quad y = -3$$

$$4x$$
Conly 1 solution, i.e. 1 point of intersection
i.e. 1 poin

5.
$$(x++)(5x-3) - 3(x-2)^{2}$$

$$5x^{2} + 17x - 12 - 3(x^{2} - 4x + 4x)$$

$$5x^{2} + 17x - 12 - 3x^{2} + 12x - 12$$

$$2x^{2} + 29x - 24x$$
5.
$$(x+3)(x+k)(2x-5)$$

$$(x^{2} + 3x + kx + 3k)(2x-5)$$

$$x^{2}'_{5} = -5x^{2} + 6x^{2} + 2kx^{2}$$

$$6x - 5 + 6 + 2k = -3$$

$$2k = -4k$$

$$k = -2$$
6.
$$(-2, 7) \quad (-4k)^{2}$$

$$9^{nd} = 4k \qquad \therefore \qquad \frac{p-7}{-2} = 4k$$

$$\frac{p-7}{-2} = 4k$$

$$p-7 = -8$$

$$p = -1$$
6.
$$(12, 7) \quad (6q) = (m, 5)$$

$$(\frac{-2+k}{2}, \frac{7+q}{2})$$

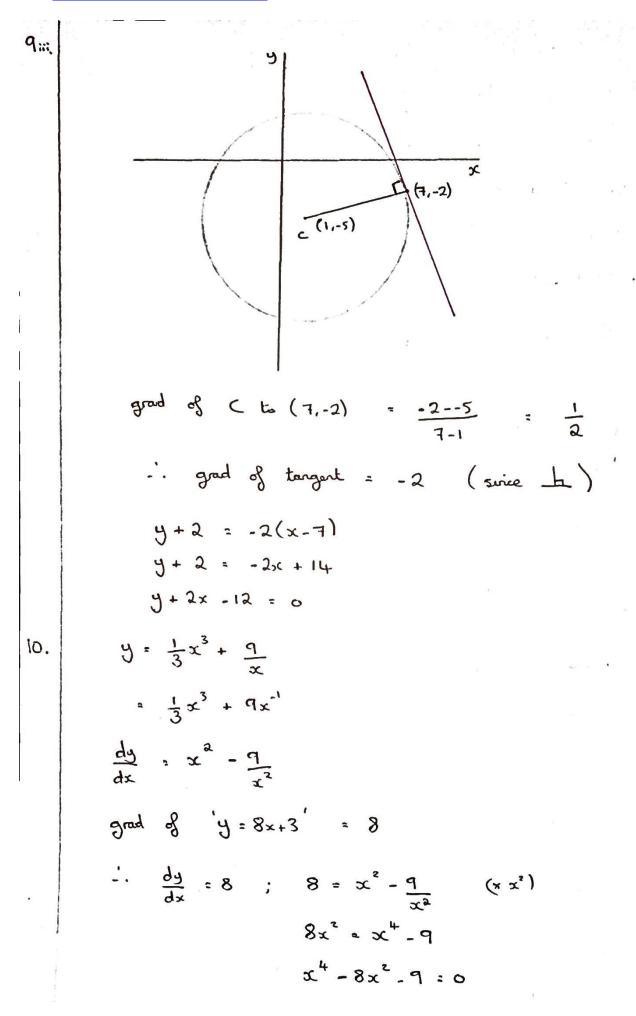
$$x'_{5} = \frac{-2+k}{2} = m = (4 + 2m), \quad m = 2$$

$$y'_{5} = \frac{7+q}{2} = 5 = (7 + q) = 10, \quad q = 3$$

6...,
$$(-2, 7)$$
 $(4, 3)$ largely $= 2\sqrt{13}$
 $-\frac{1}{2} 2\sqrt{13} = \sqrt{(4-2)^2 + (3-7)^2}$
 $2\sqrt{13} \cdot \sqrt{(4+2)^2 + (-1)^2}$ (square bolk sides)
 $52 \cdot (d+2)^2 + 16$
 $d^2 + 4d + 4 + 16 = 52$
 $d^4 + 4d - 32 = 0$
 $(d+8)(d-4) = 0$
 $d = 4 = 0$ $d = -8$
 $7i$. $9 = \frac{(3x)^2 \times x^4}{x}$
 $\cdot \frac{91x^6}{x}$
 $\cdot \frac{91x^6}{x}$
 $\cdot \frac{91x^6}{x}$
 $\frac{1}{x} = \frac{1}{3}x^{-3/3}$
 $7i$. $9 \cdot \frac{1}{dx^3}$
 $= \frac{1}{4}x^{-3}$
 $\frac{d_9}{d_x} - \frac{3}{4}x^{-4}$

•

.


. .

.

8.

8.
$$kx^{2} + (3k-1)x - 4 = 0$$

No real roots ... disc < 0
 $(3k-1)^{2} - 4(k)(-4) < 0$
 $qk^{2} - 6k + 1 + 16k < 0$
 $qk^{2} + 10k + 1 < 0$
 $(qk + 1)(k + 1) < 0$
c.v.s $k = -1$ $k = -1/q$
 q_{1}
 $x^{2} + y^{2} - 2x + 10y - 19 = 0$
 $(x - 1)^{2} - 1 + (y + 5)^{2} - 25 - 19 = 0$
 $(x - 1)^{2} + (y + 5)^{2} - 19 = 0$
 $(x - 1)^{2} + (y + 5)^{2} - 19 = 0$
 $(x - 1)^{2} + (y + 5)^{2} - 19 = 0$
Radius $= \sqrt{45} = \sqrt{9} + 5 = \sqrt{3} + 5$
 q_{1} . Sub $x = 7$, $y = -2$ in xircle
 $(7 - 1)^{2} + (-2 + 5)^{2} = 45$
 $36 + 9 = 45$
 $45 = 45$
 -1 pink lies on zircungerence
 $g = zircle$

Maths Made Easy © Complete Tuition Ltd 2017

Maths Made Easy C Complete Tuition Ltd 2017

10 cont.	$x^{4} - 8x^{2} - 9 = 0$ $y^{2} - 8y - 9 = 0$	لعد	$y = x^2$ $y = x^4$	
	(y - 9)(y+1) = 0			
	y= 9 or y= -1			
	$\begin{array}{c} y \cdot q & \vdots & x^2 = q \\ & x \cdot t \cdot 3 \end{array}$	9=-1;	$x^2 = -1$ $x = \sqrt{-1}$	×
	$x=3$; $y=\frac{1}{3}(3)^{3}+\frac{9}{3}$			
	2 9+3 : 12			
	$x = -3$; $y = \frac{1}{3}(-3)^{5} + \frac{9}{(-3)}$ = -9 - 3 = -12			
	. points at (3,12)	(-3, -12		