


$$OCR - Jan II \quad CZ$$
  
I.  $(1+2x)^{7} = 1^{7} + {}^{7}C_{1} \cdot {}^{1}(2x) + {}^{3}C_{2} \cdot {}^{3}(2x)^{2}$ 
  
 $: 1 + 114x + 814x^{2} + ...$ 
  
I.  $(2-5x)(1+114x + 814x^{2} + ...)$ 
  
 $x^{2} tarms : 2(814x^{2}) - 5x(114x)$ 
  
 $: 98x^{2}$ 
  
2.  $U_{n} = 3n + 2$ 
  
 $U_{1} : 3(1) + 2 : 5$ 
  
 $U_{2} : 3(2) + 2 : 8$ 
  
 $U_{3} : 3(3) + 2 : 11$ 
  
2. Common degeneree  $g = 3$   $\therefore$  arithmetric sequence  $(a:5, d:3)$ 
  
 $\sum_{n=1}^{200} U_{n} = \sum_{n=1}^{200} U_{n} - \sum_{n=1}^{100} U_{n}$ 
  
 $: 520 - 5100$ 
  
 $: \frac{200}{2} [2(5) + (200 - 1)3] - [\frac{100}{2} (2(5) + (100 - 1)3]]$ 
  
 $= 60, 700 - 15, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = y$ 
  
 $45, 350$ 
  
3.  $y = \sqrt{x-3}$ 
  
 $x = 1, 2, 2(3, 5f.)$ 

Maths Made Easy © Complete Tuition Ltd 2017

Tops of the trapezia below the surve ... underestimate  $5^{*-1} = 120$  $log(5^{*-1}) = log 120$ (x-1) log 5 = log 120ha.  $x - 1 = \frac{\log 120}{\log 5}$ x = 3.97 (35.f.) 46.  $\log_2 x + 2\log_2 3 = \log_2(x+5)$ 1  $\log_2 x + \log_2 9 = \log_2(x+s)$  $\log_2 9x = \log_2(x+5)$ 9x : x+5 8x = 5 x = 5/8Sa. a = 4a (Since Soo = 4 times the gost term) a : ka(1-r) (;a) 1 . 4 - 47 4+ : 3 r. 3/4  $U_3 = \alpha r^2$   $\therefore \quad 9 = \alpha \left(\frac{3}{4}\right)^2 \quad \left(\frac{3}{4}\left(\frac{3}{4}\right)^2\right)$ 5. a = 16  $S_{20} = \alpha(1-r^{20})$ 5 ....  $= \frac{16(1-(3/4)^{20})}{1-3/4}$ = 63.8 (3 s.f.)

.

7. 
$$3\cos^{2} + 2\sin x - 3 = 0$$
  $0 \le x \le 180^{\circ}$   
Use  $\sin^{2} 0 + \cos^{2} 0 \equiv 1 \quad \forall \quad 0 \in \mathbb{R}$   
 $3(1 - \sin^{2} x) + 2\sin x - 3 = 0$   
 $3 - 3\sin^{2} x + 2\sin x - 3 = 0$   
 $3\sin^{2} x - 2\sin x = 0$   
 $\sin x = 0$  or  $3\sin x = 2$   
 $\mathbb{R}V, x = 0^{\circ}$   $5\pi x - 2/5$   
 $\mathbb{R}$   
 $\mathbb$ 

Maths Made Easy © Complete Tuition Ltd 2017

-

3

.

Ť.

9.14. 
$$\int_{-1}^{V_{4}} -4x^{3} + 9x^{2} + 10x - 3 \quad dx$$

$$\begin{bmatrix} -x^{4} + 3x^{3} + 5x^{2} - 3x \end{bmatrix}_{-1}^{V_{4}}$$

$$F[V_{4}] = -\frac{101}{256}$$

$$F[-1] = 4$$

$$Area = -\frac{101}{256} - 4 = -\frac{1125}{256}$$

$$\int_{-V_{4}}^{3} -4x^{2} + 9x^{2} + 10x - 3 \quad dx$$

$$\begin{bmatrix} -x^{4} + 3x^{3} + 9x^{2} + 10x - 3 \quad dx \\ & & \\ -x^{4} + 3x^{3} + 5x^{2} - 3x \end{bmatrix}_{V_{4}}^{3}$$

$$F[3] = 36$$

$$F[V_{4}] = -\frac{101}{256}$$

$$Area = 36 - \left(-\frac{101}{256}\right) = \frac{9317}{256}$$

$$= \frac{5221}{256}$$