## $A Q A$

# General Certificate of Secondary Education January 2013 

Mathematics (Linear) B
4365
Paper 1
Higher Tier

# Final 

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

| M | Method marks are awarded for a correct method which could lead <br> to a correct answer. |
| :--- | :--- |
| M dep | A method mark dependent on a previous method mark being <br> awarded. |
| A | Accuracy marks are awarded when following on from a correct <br> method. It is not necessary to always see the method. This can be <br> implied. |
| B | Marks awarded independent of method. |
| B dep mark that can only be awarded if a previous independent mark |  |
| Q | Marks awarded for quality of written communication. |
| ft | Follow through marks. Marks awarded for correct working <br> following a mistake in an earlier step. |
| SC | Special case. Marks awarded for a common misinterpretation <br> which has some mathematical worth. |
| oe | Or equivalent. Accept answers that are equivalent. |
| e.g. accept 0.5 as well as $\frac{1}{2}$ |  |

## Paper 1 Higher Tier

| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 1(a) | Line from (0800, 0) to (0930,60) | B1 | Line need not be straight $\pm 1$ small square |
|  | 1 cm horizontal line from their (0930, 60) <br> or horizontal line ending at 1000 | B1ft | $\pm 1$ small square |
|  | Line from $(1000,60)$ to meet the time axis between $(1106,0)$ and $(1118,0)$ inclusive <br> or line from their $(1000,60)$ down 6 cm and across 2.4 cm | B1ft | Line need not be straight $\pm 1$ small square |


| 1(b) | Correct ft decision and reference to <br> their graph <br> or <br> correct ft decision and correct ft time <br> $( \pm 6$ minutes) read from their graph | B1ft | Must be from a line that meets the time axis <br> at at least 6 minutes past their 1000. |
| :---: | :--- | :--- | :--- |


|  | Correct ft decision and calculation of <br> home time <br> 1(b) <br> Alt | eg 60 miles at $50 \mathrm{mph}=1.2$ hours <br> 1130 is 1.5 hours after 10 <br> or $10+1.2$ hours $=1112$ | B1 ft |
| :---: | :--- | :--- | :--- |$\quad \mathrm{ft}$ from their 1000


| Q | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 2(a) | Fully correct diagram with vertices <br> within 1 mm | B2 | B1 for 2 or 3 sides correct from a full <br> hexagon. <br> B1 for symmetrical diagram (about vertical <br> line) with bottom vertex correct. <br> Ignore any internal lines. |
| :---: | :--- | :---: | :--- |


| 2(b) | $(\times) 3(\times)$ or $1: 3$ | B1 | Accept -3 or both |
| :--- | :--- | :--- | :--- |


| 3 | $5 x-3 x$ or $11+9$ | M1 | Implied by $2 x$ or 20 |
| :---: | :--- | :---: | :--- |
|  | $2 x=20$ | A1 |  |
|  | 10 | A1ft | ft on one error only |


| 4(a) | $75 \div 3$ | M1 | $75 \div 60 \times 20$ or 1.25 km per minute |
| :---: | :--- | :---: | :--- |
|  | 25 | A1 |  |


| 4(b) | Any correct conversion between miles <br> and km seen, eg 5 miles $=8 \mathrm{~km}$ <br> or 1 mile $=1.6 \mathrm{~km}$ or $1 \mathrm{~km}=5 / 8$ mile | M1 | $75 \times \frac{5}{8}$ |
| :--- | :--- | :---: | :--- |
|  | Slower as limit is 80 km | A1 | Slower as $46.875<50$ |


| $\mathbf{5 ( a )}$ | 27 | B1 |  |
| :---: | :--- | :---: | :--- |
|  | 81 | B1ft | ft their $27 \times 3$ <br> Answers must be evaluated |


| 5(b) | $3^{13}$ or 13 | B1 |  |
| :--- | :--- | :--- | :--- |

5(c) $\quad 3^{5}$ or 5
B1

| Q | Answer |  |  | Mark | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 |  |  |  | B3 | B2 for 12 and/or 10 in correct position and any product that makes 60 in first column (not using 5 or 6) <br> B1 for 12 and/or 10 in correct position or any product that makes 60 in first column (not using 5 or 6) |
|  | 4 | 12 | 10 |  |  |
|  | 15 | 5 | 6 |  |  |
|  |  |  |  |  |  |
| 7(a) | $(27-5) \div 2$ |  |  | M1 | Condone omission of brackets |
|  | 11 |  |  | A1 |  |
|  | 3 |  |  | B1ft | ft (their $11-5$ ) $\div 2$ if A0 awarded SC1 for 0.75 SC1 for 24.5 and 22 |


| 7(a) <br> Alt 1 | $2 x+5=27$ <br>  <br> 11 or $\quad 2(2 x+5)+5=27$ oe M1 |  |  |
| :--- | :--- | :---: | :--- |
|  | 3 | A1 |  |


|  | Two fully correct trials <br> eg any two of <br> $u_{1}=1, u_{2}=7, u_{3}=19$ <br> 7(a) <br> Alt 2 | $\mathrm{u}_{1}=2, \mathrm{u}_{2}=9, \mathrm{u}_{3}=23$ <br> $\mathrm{u}_{1}=4, \mathrm{u}_{2}=13, \mathrm{u}_{3}=31$ <br> $\mathrm{u}_{1}=5, \mathrm{u}_{2}=15, \mathrm{u}_{3}=35$ | M1 |
| :---: | :--- | :---: | :---: |


|  | $4 n$ | M1 | Accept $4 \times n$ or $n \times 4$ but not $n 4$ |
| :---: | :---: | :---: | :---: |
| 7(b) | $4 n+2$ | A1 | oe $\begin{gathered} \text { eg } 4 \times n+2 \\ 3 n+n+2 \\ 2(2 n+1) \end{gathered}$ <br> SC1 for $n 4+2$ |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| $\mathbf{8}$ | $\pi \times 6 \times 6 \div 2$ | M1 | oe accept a numerical value for $\pi$ |
| :---: | :--- | :---: | :--- |
|  | $18 \pi$ or a numerical value <br> $[55.8,56.57]$ | A1 | Accept $\pi \times 18$ or $\pi 18$ |


| *9a | Open circle at -2 with <br> line going right to at least 4 <br> or <br> with arrow (of any length) to the right | Q1 | Strand (i) <br> If line is marked with any sort of circle at the <br> RHS this is Q0 |
| :--- | :--- | :--- | :--- |


| $\mathbf{9 b}$ | $3 x \leq 11-5$ or $3 x \leq 6$ or $x-2 \leq 0$ | M1 | Working with $=$ sign must be recovered to $\leq$ <br> to gain any credit |
| :---: | :--- | :---: | :--- |
|  | $x \leq 2$ | A1 | Must have $x \leq$ on answer line <br> SC1 for $x<2$ <br> Any slight error in notation, e.g. $x \leq 2$ <br> or $x=$ less than 2 is M1, A0 |


| Q | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 10 | 8 and 10 | B3 | B2 for any whole number combination that satisfies the median equal to the mean. <br> There are an infinite number. <br> Common ones are <br> $(1,12),(2,11),(3,10),(4,9),(5,8),(2,6)$, <br> ( 6,7 ), $(9,14),(10,18),(11,22)$ <br> (11 + n, $22+4 n),(15,18),(16,17)$, (any <br> pair greater than 11 that total 33). <br> B1 for any decimal combination that <br> satisfies the median equal to the mean. <br> There are an infinite number. <br> Common ones are $(7.5,8),(8.5,12),(8.5+n, 12+4 n) .$ |
| :---: | :---: | :---: | :---: |


| $\mathbf{1 0}$ <br> Alt1 | $22+x+y=5 x$ | M1 | oe |
| :---: | :--- | :--- | :--- |
|  | $4 x-y=22$ | M1 | oe |
|  | 8 and 10 | A1 |  |


|  | Chooses values for $x$ and $y$ (which <br> may be the same) where both are <br> between 7 and 11 inclusive and <br> calculates mean correctly or <br> compares total to $5 x$. <br> e.g. 8 and 9 chosen, Mean $=39 \div 5=$ <br> 7.8 or total $=39 \neq 40$ <br> NB an attempt at another pair of <br> values implies rejection of first pair | M1 |  |
| :---: | :--- | :--- | :--- |
| Chooses two further values for $x$ and <br> $y$ where both are between 7 and 11 <br> inclusive and calculates mean <br> correctly or compares total to $5 x$. <br> e.g. 9 and 10 chosen, Mean $=41 \div 5$ <br> alt2 or total $=41>40$ | M1 |  |  |
|  | A1 |  |  |
| 8 and 10 |  |  |  |


| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| $\mathbf{1 1}$ | $\pi \times 10^{2} \times 4$ | M1 |  |
| :---: | :--- | :---: | :--- |
|  | $\pi \times 100 \times 4$ or $3.1 \times 100 \times 4$ <br> or $31 \times 40$ or $124 \times 10$ | A1 | Any of these products or better <br> Condone use of 3.14 or 3.142 or $\frac{22}{7}$ |
|  | 1240 | A1 | Accept 1256 or 1256.8 or $1257 .(\ldots)$ or 1260 |


| Intersecting arcs on both sides of line <br> joining sockets, of same radius <br> centred on each socket | M1 |  |
| :--- | :---: | :--- |
| Perpendicular bisector of sockets <br> within tolerance (at least 3 cm long) | A1 | Tolerance is $\pm 1 \mathrm{~mm}$ through their <br> intersecting arcs. |
| Point marked on wall 2 cm from <br> fireplace on either side | B1 |  |
| Socket marked on bottom wall where <br> their perpendicular bisector does <br> intersect the wall. | A1 | This mark is for showing that the socket can <br> only be fitted on the bottom wall. If both <br> positions marked then A0. |


|  | $6 x-4$ | B1 |  |
| :--- | :--- | :---: | :--- |
|  | LHS $=x y+6 x-x y-4$ | B1 | Both brackets must be removed. <br> Must see $x y$ and $-x y$ <br> Allow +4 for B1 |
| 13 | Expanding LHS and simplifying and <br> stating <br> $6 x-4=2(3 x-2)$ <br> or 2(3x-2) $=6 x-4$ <br> or showing clearly that all terms <br> cancel. | Q1 | Strand (ii). For the Q mark this must be <br> clearly shown and not 'assumed'. <br> If + 4 seen in expansion and this is <br> subsequently changed to -4 do not allow <br> the Q mark unless the error is recognised <br> and 'recovered'. |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 14 | $\begin{aligned} & 2(2 x+3)-4(3 x-3) \\ & \text { or } 4 x+6-12 x+12 \end{aligned}$ | M1 | This mark is for the numerator of the LHS. Ignore any denominators. <br> Three terms correct if expanded without brackets seen. |
| :---: | :---: | :---: | :---: |
|  | $-8 x+18$ | A1 |  |
|  | Their $-8 x+18=16$ | M1 | This mark is for dealing with the denominators of the LHS and the value on the RHS <br> NB $2(2 x+3)-4(3 x-3)=16$ is M2 |
|  | $0.25,1 / 4,2 / 8$ oe | A1ft | ft on one error only. Do not accept -1/-4 |


| $\begin{gathered} 14 \\ \text { Alt1 } \end{gathered}$ | $\begin{aligned} & (2 x+3)-2(3 x-3) \\ & \text { or } 2 x+3-6 x+6 \end{aligned}$ | M1 | This mark is for the numerator of the LHS. Ignore any denominators. <br> Three terms correct if expanded without brackets seen. |
| :---: | :---: | :---: | :---: |
|  | $-4 x+9$ | A1 |  |
|  | Their $-4 x+9=8$ | M1 | This mark is for dealing with the denominators of the LHS and the value on the RHS $\text { NB }(2 x+3)-2(3 x-3)=8 \text { is M2 }$ |
|  | 0.25, $1 / 4,2 / 8$ oe | A1ft | ft on one error only. Do not accept -1/-4 |


| 14 $\frac{x}{2}+\frac{3}{4}-\frac{3 x}{2}+\frac{3}{2}$ M1 Three correct terms for M1 |  |  |  |
| :---: | :--- | :--- | :--- |
|  | $-x$ or $2 \frac{1}{4}$ | A1 |  |
|  | $-x+2 \frac{1}{4}=2$ or $-x+-\frac{3}{4}=2$ | M1 |  |
|  | $0.25,1 / 4,2 / 8$ oe | A1ft | ft on one error only. Do not accept $-1 /-4$ |


| $\mathbf{Q}$ | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| $\mathbf{1 5 ( a )}$ | $0.1 \times 400(=40)$ or $0.2 \times 500(=100)$ | M 1 |  |
| :---: | :--- | :---: | :--- |
|  | 40 and 100 | A 1 |  |
|  | 140 or $140 / 900$ but not $140: 900$ | A1ft | SC2 for 760 <br> SC1 for digits $14 \ldots$ <br> ft on their $40+$ their 100 if complete correct <br> method seen. |


|  | $\frac{4}{10}$ and $\frac{3}{9}$ identified as probabilities | M1 | May be on branches of a tree diagram. |
| :--- | :--- | :--- | :--- |
| 15(b) | $\left(\frac{4}{10} \times \frac{3}{9}\right)=\frac{12}{90}=\frac{2}{15}$ | A1 | Evidence of cancelling is necessary <br> but $\frac{12}{90}=\frac{2}{15}$ is enough. <br> NB $\frac{2}{5} \times \frac{1}{3}$ is 2 marks |


| 16 | $\pi r l+\pi r^{2}=24 \pi$ | M1 | $15 \pi$ |
| :---: | :--- | :---: | :--- |
|  | $3 l+9=24$ | M1 | oe e.g. $3 \pi l=15 \pi$ |
|  | 5 | A1 | SC1 for 8 from $\pi r l=24 \pi$ Must see working <br> SC1 for 6 from $\pi r l+2 \pi r=24 \pi$ Must see <br> working <br> NB if height calculated after 5 seen ignore |


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


| 17(a) | $\sqrt{25} \sqrt{3}$ or $\sqrt{(25 \times 3)}$ |
| :--- | :--- |
| $\sqrt{5 \times \sqrt{5} \times \sqrt{3} \text { or } \sqrt{ }\left(5^{2} \times 3\right)}$ |  |

B1

| 17(a) <br> Alt | $(5 \sqrt{3})^{2}=25 \times 3$ | B1 |  |
| :---: | :--- | :--- | :--- |


| 17(b) | $\frac{6 \sqrt{3}}{3}$ or $\frac{6 \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$ or $\sqrt{ } 12$ | M1 |  |
| :--- | :--- | :---: | :--- |
|  | $2 \sqrt{3}$ | A1 |  |
| 17(c) | $(5 \sqrt{3}+5 \sqrt{3}+$ their $2 \sqrt{3}) \div 3$ | M1 | Must use $5 \sqrt{3}+$ not $\sqrt{ } 75$ <br> Condone missing brackets. <br> Working must be seen as answer can be <br> obtained from wrong work. |
|  | $4 \sqrt{3}$ | A1ft | ft on their answer to (b) if of form a $\sqrt{3}$ <br> accuracy to 2 dp. |


| 18 | $(3 x-1)(3 x+1)$ | B1 |  |
| :---: | :---: | :---: | :---: |
|  | $(3 x \pm a)(x \pm b)$ | M1 | $a b= \pm 1$ |
|  | $(3 x-1)(x+1)$ | A1 |  |
|  | Their $\frac{(3 x-1)(3 x+1)}{(3 x-1)(x+1)} \times \frac{x-2}{3 x+1}$ | M1 | This mark is for turning the second fraction upside down and multiplying by it. It can be awarded for cross multiplying at any stage $\text { eg }\left(9 x^{2}-1\right)(x-2) \div\left(3 x^{2}+2 x-1\right)(3 x+1)$ |
|  | $\frac{x-2}{x+1}$ | A1ft | Do not accept incorrect further work $\begin{aligned} & \text { ft on } \frac{(3 x-1)(3 x+1)}{(3 x+1)(x-1)} \times \frac{x-2}{(3 x+1)} \\ & =\frac{(3 x-1)(x-2)}{(3 x+1)(x-1)} \end{aligned}$ |


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 19 | Evidence that any bar area has been <br> calculated eg applying a scale to side <br> and multiplying by width. These <br> should be multiples of 12, 16, 22, 23, <br> 19 and 8 but as 23 and 19 can be <br> read from graph, do not award for <br> these values unless an area <br> calculation seen | M1 | NB each little square is one mouse but if <br> this is assumed and the total area is not <br> shown to be 500 then only this M1 can be <br> awarded. |
| :--- | :--- | :--- | :--- |
|  | A1 | NB The bars cover 20 'big' squares, so if <br> this is stated this is M1, A1 |  |
|  | M1 | Scale of 25,50 for 'big' squares as fd. |  |
|  | A1ft | This must come from valid working, so <br> answer of 60 alone or 60 from, say, $3 \times 20$ <br> is M1. <br> ft their first bar total $\times 500 \div$ their total and <br> rounded or truncated to an integer. |  |


|  | 20 'big' squares stated as area of all <br> bars | M1 |  |
| :--- | :--- | :---: | :--- |
| 19 <br> Alt | $500 \div 20(=25)$ | A1 |  |
|  | Their $25 \times 2.4$ | M1 |  |
|  | 60 | A1ft |  |

