AQA, OCR, Edexcel

GCSE

GCSE Maths

Proof Answers

Name:

M M E
 Mathsmadeeasy.co.uk

Total Marks:

Proof

1. The $\mathrm{n}^{\text {th }}$ even number is $2 n$.
a. The next even number can be written as $2 n+2$

Explain why

- n is any number, $2 n$ must be even as it is divisible by 2
- The next number is $2 n+1$ which is odd
b. Write down an expression, in terms of n , for the next even number after $2 n+2$.
- $2 n+4$
c. Show algebraically that the sum of any 3 consecutive even numbers is always a divisible by 6
- $2 n+(2 n+2)+(2 n+4)=$
- $6 n+6$
- $6(n+1)$

(3 Marks)

2. Prove, using algebra, that the sum of two consecutive integers is always odd.

- $n+(n+1)$
- $=2 n+1$
- $2 n$ is always even so $2 n+1$ is always odd

(2 Marks)

3. Prove algebraically that $(4 n+2)^{2}-(2 n+2)^{2}$ is a divisible by 4 for all positive integers.

- $\left(16 n^{2}+16 n+4\right)-\left(4 n^{2}+8 n+4\right)$
- $12 n^{2}+8 n$
- $4 n(3 n+2)$
(4 Marks)

4. Prove that $(2 n+3)^{2}-(2 n-3)^{2}$ is a multiple of 8 for all positive integers of n.

- $(2 n+3)(2 n+3)-(2 n-3)(2 n-3)$
- $\left(4 n^{2}+12 n+9\right)-\left(4 n^{2}-12 n+9\right)$
- $24 n=8(3 n)$

(3 Marks)

5. Prove algebraically that $(3 n+1)(n+3)-n(3 n+7)=3(n+1)$

- $\left(3 n^{2}+10 n+3\right)-\left(3 n^{2}+7 n\right)$
- $3 n+3=3(n+1)$

(3 Marks)

6. Prove Algebraically that $\frac{1}{8}(4 n+1)(n+8)-\frac{1}{8} n(4 n+1)=4 n+1$

$$
\begin{aligned}
& \frac{1}{8}\left(4 n^{2}+33 n+8\right)-\frac{1}{8}\left(4 n^{2}+n\right) \\
& \frac{\left(4 n^{2}+33 n+8\right)-\left(4 n^{2}+n\right)}{8}
\end{aligned}
$$

$$
\frac{32 n+8}{8}
$$

RHS

(4 Marks)

7. Prove algebraically that the sum of two consecutive square numbers is twice the product of two consecutive numbers +1 .

$$
\begin{aligned}
& n^{2}+(n+1)^{2}=n^{2}+n^{2}+2 n+1=2 n^{2}+2 n+1 \\
& =2\left(n^{2}+n\right)+1 \\
& =[2 \times n(n+1)]+1
\end{aligned}
$$

(4 Marks)

8. Prove algebraically that the sum of 4 consecutive square numbers is divisible by 4 remainder 2.
(5 Marks)
$n^{2}+(n+1)^{2}+(n+2)^{2}+(n+3)^{2}$
$4 n^{2}+12 n+14=\left(4 n^{2}+12 n+12\right)+2$
$4\left(n^{2}+3 n+3\right)+2$
9. Show that the difference between 14^{20} and 21^{2} is a multiple of 7 .
$14^{20}-21^{2}=(2 \times 7)^{20}-(3 \times 7)^{2}$
$=7^{20} 2^{20}-3^{2} 7^{2}$
$=7\left(7^{19} 2^{20}-3^{2} 7\right)$
(3 Marks)
10. Tom says that $7 x-(2 x+3)(x+2)$ is always negative. Is he correct? Explain your answer.

$$
\text { Yes, } \quad 7 x-(2 x+3)(x+2)=-2 x^{2}-6<0
$$

Yes, the expression is always negative. The square of any real number is always positive. Since we have $-2 \mathrm{x}^{2}$ we know that is always negative, irrespective of the value of x . Thus, the expression is less than zero for every real x .
(3 Marks)
11. Show that $3^{60}-25$ is not a prime.

$$
3^{60}-25=3^{60}-5^{2}=\left(3^{30}-5\right)\left(3^{30}+5\right)
$$

So it cannot be prime as we can express it as the product of two factors.

