Edexcel

A Level

A Level Maths

Edexcel Core Maths C4 June 2014 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

Edexcal June 14 C4

1a.
$$x^3 + 2xy - x - y^3 - 20 = 0$$
 $3x^2 + 2y + 2x \frac{dy}{dx} - 1 - 3y^2 \frac{dy}{dx} = 0$
 $3x^2 + 2y - 1 = \frac{dy}{dx}(3y^2 - 2x)$
 $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$

1b. at c , $x : 3$, $y : -2$
 $\frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)} = \frac{11}{3}$
 $y = -2 = \frac{11}{3}(x - 3)$
 $y + 2 = \frac{11}{3}(x - 3)$
 $y + 3 = \frac{11}{3}(x - 3)$
 y

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$-\frac{1}{2}(x+y)^2 + 3y^2 = 12$$

$$\frac{d}{dx}\left(k(\sin y)^{3}\right) = 2\cos y(\sin y)^{2}$$

$$3k\cos y(\sin y)^{2} = 2\cos y(\sin y)^{2}$$

$$3k = 2$$

$$\frac{2}{3} \sin^3 y \cdot \int e^x dx$$

$$\frac{2}{3} \sin^3 y \cdot e^x + c$$

$$y: \frac{1}{6}$$
 when $x:0 = \frac{1}{12} = 1 + c$ $c = -\frac{11}{12}$
 $\frac{2}{3} \sin^3 y : e^{x} + \frac{11}{12}$

Ta.

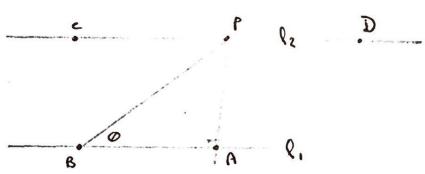
$$x: 3\tan \theta$$
, $y: 4\cos^2 \theta$ $\theta \le \theta \times \frac{\pi}{2}$
 $\frac{dx}{d\theta}$, $3\sec^2 \theta$ $\frac{dy}{dx}: -8\cos \theta \sin \theta$
 $\frac{dy}{dx}: -\frac{8}{3}\sin \theta \cos^3 \theta$

when
$$x:3$$
, $3\tan 0:3$
 $\tan 0:1$

$$\frac{dx}{dx} = -\frac{8}{8}\cos^3(\pi/\mu)\sin(\pi/\mu)$$

$$\frac{1}{2}$$
 m of normal: $\frac{3}{2}$ (since $\frac{1}{2}$)

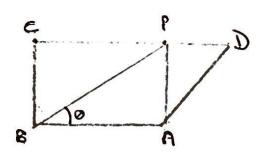
Fb.

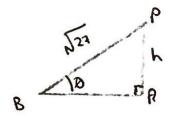

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

V:
$$\Pi \int_{0}^{\pi} y^{2} dx$$
 $y^{2} : L \cos^{2}\theta$
 $= \Pi \int_{0}^{\pi/4} l \cos^{4}\theta \frac{dx}{d\theta} d\theta$
 $= L8\Pi \int_{0}^{\pi/4} cos^{2}\theta d\theta$
 $= L8\Pi \int_{0}^{\pi/4} cos^{2}\theta d\theta$
 $= L8\Pi \int_{0}^{\pi/4} l \cos^{2}\theta d\theta$
 $= L8\Pi \int_{0}^{\pi/4}$

$$\cos 0 : \frac{\alpha \cdot b}{|\alpha| |b|}$$

$$= \frac{-1(1) + 1(-1) + -1(-5)}{\sqrt{1^2 + 1^2 + 5^2}}$$


$$\ell_z$$
 \underline{r} : $\binom{5}{2}$ + $\binom{-1}{2}$


$$\overrightarrow{PC} \cdot \overrightarrow{AB}$$
 so $C \text{ at } \overrightarrow{P} + \overrightarrow{AB}$

$$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$$
 $\overrightarrow{PD} : \overrightarrow{BA}$ so \overrightarrow{D} at $\overrightarrow{P} + \overrightarrow{BA}$

$$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

$$|CD| = 2|AB|$$
 $|AB| = \sqrt{\frac{1^2+1^2+1^2}{1^2+1^2}} = \sqrt{3} = 1|CD| = 2\sqrt{3}$
 $|PB| = \sqrt{23}$

$$\cos 0 : \frac{1}{3}$$

Area =
$$\frac{1}{2} \left(2\sqrt{3} + \sqrt{3} \right) + 2\sqrt{6}$$
= $9\sqrt{2}$