

2c.
3a.

$$2\cos(x+so) = \sin(x+uo)$$

 $2(\cos x \cos so - \sin x \sin so) = \sin x \cos uo + \cos x \sin uo$
 $2(\cos x \cos so - \sin x \sin so) = \sin x \cos uo + \cos x \sin uo$
 $2\cos x \cos so - 2\sin x \sin so = \sin x \cos uo + \cos x \sin uo$
 $\cos xo^2 = \sin uo^2$
 $\sin so^2 = \sin uo^2$
 $\sin so^2 = \cos uo^2$
 $equisitude'$
 $2\cos x \sin uo - 2\sin x \cos uo + \sin uo$
 $2\sin uo - 2\tan x \cos uo + \sin uo$
 $2\tan x = \tan uo$
 $3\tan x = \tan uo$
 $3\ln x = \tan uo$
 $3\ln x = \frac{1}{3} \tan uo$
 $3\ln 20 = \frac{1}{3} \tan uo$
 $3\ln 40^2 = \frac{1}{3} \tan uo$
 $3\ln 50^2 = \frac{1}{3} \tan uo$
 $50^2 = \frac{1}{3} \tan uo$
 $10^2 = \frac{1}{$

4e.	$X_{n+1} = \frac{1}{5}e^{-X_n}$	
	Xo : 0.5	
	x, = 0.185	
2	X2 · 0.492	
	$X_3 = 0.489$	
40.	x: 0.49 (22p)	•
	f(0.185) = - 0.187	
	f(0.1495) = 0.185	
	change of sign => X = 0.49	(22p)
5a.	X= sec ² 3y 0 < y < T/6	
	$x = (\sec 3y)^2$	
	dy · 2, 3 sec3y ten 3y (sec3y)'	
	· 6 tan 3y sec 3y	
56.	dy dx6 kon 3y see ² 3y	(x = sec ² 3y)
	= <u>1</u> 6x torzy	$1 + \tan^2 x = \sec^2 x$ $\tan^2 3y = \sec^2 3y - 1$
	$\frac{1}{6x(x^2-1)^{1/2}}$	$ton^2 3y = x^2 - 1$ $ton 3y = (x^2 - 1)^{n/2}$

$$5c. \quad \frac{d_{4}}{dx} = \frac{1}{6x(x_{1})^{V_{2}}} \quad f \sim 1 \qquad g : 6x(x_{1})^{V_{2}}} \quad \frac{1}{6} \circ (x_{1})^{V_{2}} + 3x(x_{1})^{-V_{2}}}{g' \cdot 6(x_{1})^{V_{2}} + 3x(x_{1})^{-V_{2}}}$$

$$\frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}} : \frac{O(bx(x_{1})^{V_{2}}) - 1(b(x_{1})^{V_{2}} + 3x(x_{1})^{-V_{2}})}{(bx(x_{1})^{V_{2}})^{\frac{1}{2}}}$$

$$= \frac{-6(x_{1})^{V_{2}} + 3x(x_{1})^{-V_{2}}}{36x^{2}(x_{1})} \quad x(x_{1})^{V_{2}}$$

$$= \frac{-6(x_{1}) + 3x}{36x^{2}(x_{1})}$$

$$= \frac{-6(x_{1}) + 3x}{36x^{2}(x_{1})} \quad x(x_{1})^{V_{2}}$$

$$= \frac{-6(x_{1}) + 3x}{36x^{2}(x_{1})^{\frac{3}{2}}} \quad z = 3$$

$$= \frac{2 - 3x}{12x^{2}(x_{1})^{\frac{3}{2}}}$$

$$= \frac{2 - 3x}{12x^{2}(x_{1})^{\frac{3}{2}}}$$

$$= \frac{2 - 3x}{12x^{2}(x_{1})^{\frac{3}{2}}}$$

$$= \frac{2 - 3x}{12x^{2}(x_{1})^{\frac{3}{2}}}$$

$$= \frac{2 - 3x}{12x^{2}(x_{1})^{\frac{3}{2}}} \quad z = 2b_{1}(x_{1})$$

$$h_{1}((u, 2x)(q, 3x)) = O((x_{1})^{2})$$

$$(u, 2x)(q, 3x) = (x_{1})^{2}$$

$$= \frac{5x^{2} - 32x + 35 = 0}{(5x - 7)(x - 5) = 0}$$

$$x = 5 \quad or \quad \frac{7}{5}$$

. . .

.

64.
$$2^{x} e^{3x \cdot 1} = 10$$

 $\ln (2^{x} e^{3x \cdot 1}) = \ln 10$
 $\ln 2^{x} + \ln (e^{3x \cdot 1}) = \ln 10$
 $x \ln 2 + 3x + 1 = \ln 10$
 $x (3 + \ln 2) = -1 + \ln 10$
 $x = \frac{-1 + \ln 10}{3 + \ln 2}$
7a. $0 \le f(x) \le 10$
7b. $f(0) : f(0) = 5$
 $f(5) = 3$
 $(2,0) = \frac{3}{(5,0)}^{(5,0)} \mu$
 $(3,0) = \frac{3}{(5,0)}^{(5,0)} \mu$

74.
$$g(x) = 16$$

$$g'(g(x)) = g'(16)$$

$$f(x) = \frac{5(16) - \mu}{16 + 3}$$

$$f(x) = 4 \implies x = 6 \quad \text{or} \quad x = 0.14$$

$$(0.5)$$

$$s = \frac{1}{4^{1}} \qquad \Rightarrow x = 6 \quad \text{or} \quad x = 0.14$$

$$(0.5)$$

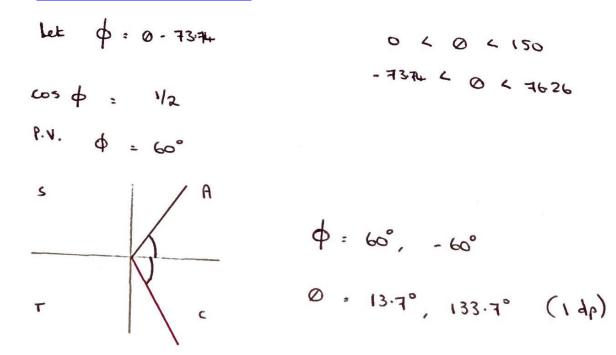
$$s = \frac{1}{4^{1}} \qquad \Rightarrow x = 6 \quad \text{or} \quad x = 0.14$$

$$(0.5)$$

$$s = \frac{1}{4^{1}} \qquad \Rightarrow x = 6 \quad \text{or} \quad x = 0.14$$

$$(0.5)$$

$$s = \frac{1}{4^{1}} \qquad \Rightarrow x = 6 \quad \text{or} \quad x = 0.14$$


$$(0.5)$$

$$s = \frac{1}{4^{1}} \qquad \Rightarrow x = 6 \quad \text{or} \quad x = 0.14$$

$$(0.5)$$

$$s = \frac{1}{4^{1}} \qquad = \frac{1}{4} \qquad = \frac{1}{$$

8.
$$V = \frac{21}{24 \sin \theta + 7 \cos \theta}$$

 $= \frac{21}{25 \cos(\theta - 73.7 L)}$
men value § $\cos(\theta - 73.7 L) = 1$.
 \therefore min. § $V = \frac{21}{25 \times 1}$ $0.8 L$
8.
when $\cos(\theta - 73.7 L) = 1$ (cs¹)
 $\theta = 73.7 L$ 0
 $\theta = 73.7 L$
 1.68
 $\frac{21}{25 \cos(\theta - 73.7 L)} = \frac{21}{25 \times 1.68}$
 $\cos(\theta - 73.7 L) = \frac{21}{25 \times 1.68}$
 $\cos(\theta - 73.7 L) = 0.5$ $0.4.0.4.150$

