Edexcel
A Level
A Level Maths Edexcel Core Maths C1 June 2013 Model Solutions
Name:
M M E Mathsmadeeasy.co.uk
Total Marks:

Edexcel June 13 CI ١. $\frac{\overline{7} + \sqrt{5}}{\sqrt{5} - 1} \times (\sqrt{5} + 1)$ $\frac{(7+\sqrt{5})(\sqrt{5}+1)}{(\sqrt{5}+1)}, \frac{7\sqrt{5}+7+5+\sqrt{5}}{5-1}, \frac{8\sqrt{5}+12}{4}, 2\sqrt{5}+3$ 2. 5 10x" - 4x - 3x - 4x $= \frac{10}{5}x^{5} - \frac{11}{2}x^{2} - \frac{3}{(1/2)}x^{1/2} + c$ $2 2x^{5} - 2x^{2} - 6x^{1/2} + c$ $8^{5/3} = (8^{1/3})^5 = (3\sqrt{8})^5 = 2^5 = 32$ 3a. $\frac{(2x^{1/2})^{3}}{1+x^{2}} = \frac{2^{3} \cdot x^{3/2}}{1+x^{2}} = \frac{3x^{3/2}}{1+x^{2}} = 2x^{-1/2} \cdot \frac{2}{1+x^{2}}$ 31 $a_{n+1} = k(a_{n+2})$ ha. , a, = 4 $a_2 = k(a, +2)$ = k(4+2) = 6k 46. $\sum_{i=1}^{3} a_{i} = 2 \quad (=) \quad a_{1} + a_{2} + a_{3} = 2$ $a_3 = k(a_2 + 2)$ = k(6k+2) $= 6k^2 + 2k$ $4 + 6k + 6k^{2} + 2k = 2$ 6k2+8k+2=0 3k2+4k+1=0 (3k+1)(k+1) = 0k=-1 or -1/3 1.

Maths Made Easy C Complete Tuition Ltd 2017

So.
$$6z+8 > 1-z$$

 $\exists z > -\exists z$
 $\exists z > -\exists z$
 $\exists z > -1$
Sb. $\exists x^{2}+8z - 3 < 0$
 $(\exists x-1)(x+3) < 0$
 $c.v.s = z - 3 = x, v_{3}$
 $for (-1,3) (11,12)$
 $m = \frac{y_{1}-y_{2}}{x_{1}-x_{2}} ; \frac{3-12}{-1-11} = \frac{-9}{-12} = \frac{3}{12}$
 $y-3 = \frac{3}{4}(x--1) = x^{4}$
 $by -12 = 3x + 3$
 $\exists x - by +15 = 0$
 $bb = \frac{3x - by +15 = 0}{3y + bx - 20 = 0} = 12y + bx = -120 = 0$
 $(b = \frac{3x - by +15 = 0}{-12} = \frac{12y + bx = -120 = 0}{-12} = 0$
 $(b = \frac{3x - by +15 = 0}{-12} = \frac{12y + bx = -120 = 0}{-12} = \frac{12y + bx = -120 = 0}{-12} = 0$
 $(b = \frac{25x - 3}{-12y} + bx = 0$
 $(b = \frac{25x - 3}{-12y} + bx = 0$
 $(c = \frac{12y - 23 + bx}{-12y} = \frac{12y - 72}{-12y} = \frac{12y - 72}{-12y}$

Maths Made Easy © Complete Tuition Ltd 2017

The AP
$$a = 200$$
 $d = 20$
Un = 600 , Un = $a + (n-1)d$
 $600 - 200 + (n-1)20$
 $20 = (n-1)20$
 $21 = (n-1)20$

Maths Made Easy © Complete Tuition Ltd 2017

	visit <u>mup // www.mathshadeedsy.co.uk/</u> for more fantastic resources.
9a.	$F'(x) = \frac{(3-x^2)^2}{x^2}$
	∞
	$= \frac{9-6x^2+x^4}{x^2}$
	$= 9x^2 - 6 + x^2$
_	
Чь.	$f''(x) = -18x^{-3} + 2x$
9e.	$F(x) = \int f'(x) dx = \int qx^{-2} - 6 + x^{2} dx$
	$= -9x^{-1} - 6x + \frac{1}{3}x^{3} + c$
	when $x = -3$, $y = 10$ $10 = -\frac{9}{-3} - 6(-3) + \frac{1}{3}(-3)^3 + c$
	10 = 3 + 18 - 9 + 6
ľ	10 = 12+0 =7 0 =- 2
	$f(x) = -9x^{-1} - 6x + \frac{1}{3}x^{3} - 2$
100_	2x+y=1 => y=1-2x 0
	$x^{2}-4ky+5k=0$
	'Sub O into @'
	$x^{2} - 4k(1-2x) + 5k = 0$
	$x^2 - 4k + 8kx + 5k = 0$
	$x^2 + 3kx + k = 0$
106.	equal roots => b ^e -hac = 0
	$(8k)^{2} - \mu(1)(k) = 0$
	$64k^2 - 4k = 0$
	4k(16k-1) = 0
	$k = 0$ or $1/16$, since $k \neq 0$, $k = \frac{1}{16}$
1	

•

Ice.
$$k = \frac{1}{16}$$
, $x^{2} + 3kx + k = 0$
 $x^{2} + \frac{1}{2}x + \frac{1}{16} = 0$
 $(x + \frac{1}{6})^{2} = 0$
 $x = -\frac{1}{6}$
sub in (0)' $y = 1 - 2(-\frac{1}{6})$
 $= 1 + \frac{1}{2}$
 $: \frac{3}{2}$
 $\therefore x = -\frac{1}{6}$, $y = \frac{3}{2}$
Illa. when $y = 0$; $0 = \frac{3}{2} + \frac{1}{4}$ ax
 $0 = 3 + \frac{1}{4}$
 $x = -\frac{3}{4}$ so $(-\frac{3}{6})($

•

.

٠

.

$$|AB| = \sqrt{(0--4)^2 + (12-0)^2}$$

$$= \sqrt{16 + 144}$$

$$= \sqrt{16}$$

$$= \sqrt{16 \times 10}$$

$$= 44\sqrt{10}$$