Edexcel

A Level

A Level Maths

Edexcel Core Maths C4 June 2011 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

-	Jun 11 Edexcel - C4				
***	1. $q_{x^{2}} = A + B + C$ $(x-1)^{2}(2x+1) = x-1 + (x-1)^{2} + 2x+1$				
	$(x-1)^{2}(2x+1) \qquad x-1 \qquad (x-1)^{2} \qquad 2x+1$				
	$9x^2 = A(x-1)(2x+1) + B(2x+1) + (x-1)^2 C$				
	x:1; 9:38 => 8:3				
	$x = -\frac{1}{2}$; $\frac{9}{4} = \frac{9}{4} = \frac{1}{2}$				
	x: 0; 0: -A + B + C				
	A : 3+1 => A : 4-				
-0-	2. $f(x) : (9 + \mu x^2)^{-1/2}$				
	-1/2				
	$9^{-\frac{1}{2}} \left(1 + \frac{4}{4} x^2 \right)^{-\frac{1}{2}}$				
	7				
	$\frac{1}{3} \left[1 + (-1/2)(\frac{\mu}{q}x^2) + (-1/2)(-3/2)(\frac{\mu}{q}x^2)^2 + \dots \right]$				
	2!				
	: 1 (1 - 2 2				
	$\frac{1}{3}\left(\frac{1-2x^2+2x^4+}{9}+\frac{27}{27}\right)$				
-0-					
	$\frac{1}{3} - \frac{2}{27} \times \frac{2}{81} \times \frac{4}{81}$				
	3 27 81				
	$\frac{3a. V = \frac{1}{12}\pi h^{2}(3-4h)}{3h} \frac{dV}{dh} = \frac{2h\pi(3-4h)}{12} - \frac{4L\pi h^{2}}{12}$				
	when h = 0.1, dv . 77				
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	36 dh . dv . dl = 77 1				
	dt dt dv 800 2h m (3-4h) - 4 mh 2				
	12 12				
	when h=0·1; dh, 17 25 = 1				
- 1	when h=0.1; dh, 17 25 = 1				

1	
40. x. 12; y. 0.0333	
x = 3/2; y = 1.3596	
hb. h=b-a	
Area ~ 1 12 (0+3.9210) +2(0.0333+1.3596+0.3240))
= 1.300 to 2 d.p)
$\frac{4e}{2}\int_{2}^{4} \frac{(u-2)\ln u}{2} du = \frac{u \cdot x^{2} + 2}{2}$ $\frac{du}{du} = \frac{2}{2} \times \frac{dx}{dx}$	
$\frac{1}{2} \int_{0}^{\sqrt{2}} x^{2} \cdot \ln(x^{2}+2) \cdot 2x dx = x \sqrt{2} = 0$	
$= \int_{0}^{\sqrt{2}} x^{3} \ln(x^{2}+2) dx = \text{area of } R$)
$\frac{1}{2} \int_{2}^{4} \frac{1}{u^{2}} \left(u-2 \right) \ln u du \qquad u \cdot \ln u v' \cdot u - 2$ $u' = \frac{1}{u} v = \frac{1}{2} u^{2} - 2u$	
$\frac{1}{2} \left[\ln u \left(\frac{1}{2} u^2 - 2u \right) - \int \frac{1}{u} \left(\frac{1}{2} u^2 - 2u \right) du \right]$	
$\frac{1}{2} \left[\frac{1}{2} u^2 - 2u \right] \ln u - \frac{1}{4} u^2 + 2u \right]_2^4$	
$\frac{1}{2}(4-(-2\ln 2+3)) = \frac{1}{2}(1+2\ln 2)$	

5 (lny = 2xlnx => y = e ^{2xlnx}	
	1 dy 2 lnx + 2 y dx	
	$\frac{dy}{dx} = e^{2x\ln x} \left(2\ln x + 2 \right)$	
at x	$\frac{2^{(2)\ln 2}}{dx} = e^{2(2)\ln 2} \left(2\ln 2 + 2\right)$	
	= 16 (2 ln 2 + 2)	
	= 32 ly 2 + 32	
6a. <u>r</u>	$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{bmatrix} + \lambda \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -\frac{5}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -\frac{5}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}$	2 -3 -1
	$6 - \lambda = -5 + 2m$ 0 => $11 - \lambda =$ $-3 + 2\lambda = +15 - 3m$ 0 => $-18 + 2\lambda =$	-3m @
	$-2+3\lambda = 3+m$	\
soP	$\frac{3}{3}$	

66.	$\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \cos \emptyset \begin{vmatrix} -1 \\ 2 \\ 3 \end{vmatrix} \times \begin{vmatrix} 2 \\ -3 \\ 1 \end{vmatrix}$
	-2-6+3 = coso
	0 = 110.9° => acute argle = 69.1°
6e_	$B \left(\begin{array}{c} 5 \\ -1 \end{array} \right) \qquad 6-\lambda = 5$
	$-3+2\lambda=-1$
	-2+3/=1
	works for $\lambda:1 \Rightarrow 8$ is on l_1
64	
OC.	B
	156 X
	A)69.1°
	$\overrightarrow{AB} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix} \qquad [AB] : \sqrt{2^2 + (-4)^2 + (-6)^2} = \sqrt{5}$
	TCS
	0 A O A H H
	$\sin 69.1^{\circ} = \infty$
<u>:</u>	N 56
	x = N56, sin 69.1°
	= 6.99 to 3 s.f.

80. ((Ly + 3) -1/2 dy	
d k(4y+3)	= 4t (my +3)
	4k - 1 => k = 1/2
1 (Ly+3) 12 + c	
86 dy = (4y+3)12	
$\frac{dy}{dx} = \frac{(Ly+3)^{1/2}}{x^2}$ $\int \frac{dy}{(Ly+3)^{1/2}} = \int \frac{dx}{x^2}$	
1 (4y+3) ^{1/2} = -	
y: 1.5, x: -2; 3/2	= 1 + c => c=1
1 (44+3) =	<u>x</u>
(Ly +3) ^{1/2} =	- 2 + 2 x
му+3:	$\left(-\frac{2}{x}+2\right)^2$
y , 1 (6	$(2-2)^2 - 3$
<u>.</u>	