

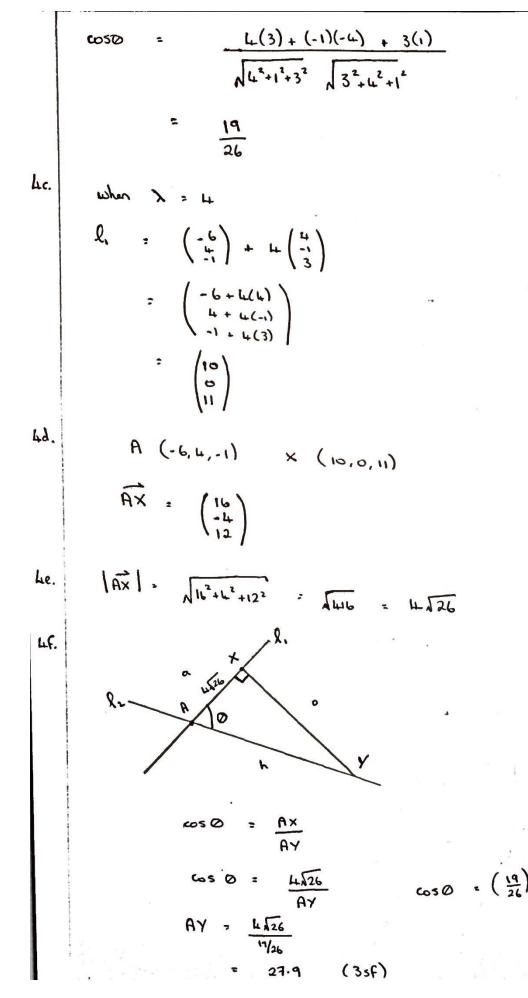
Edencel
$$J_{an}$$
 to cit
I.a. $\sqrt{1-8z}$
 $(1-8x)^{V_2} = 1 + (\frac{1}{2})(-8x) + (\frac{1}{2})(-\frac{1}{2})(-8x)^2 + (\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2}x)^2 + ...$
 $= 1 - 4x - 8x^2 - 32x^3 + ...$
Ib. when $x = \frac{1}{100}$; $\sqrt{1-8(\frac{1}{100})}$
 $= \sqrt{\frac{123}{55}}$
 $= \frac{123}{55}$
I.e. $\frac{\sqrt{23}}{5} \approx 1 - 4(\frac{1}{100}) - 8(\frac{1}{100})^2 - 32(\frac{1}{100})^3$
 ≈ 0.959168
 $\sqrt{23} \approx 5(0.959108)$
 $= 4.979584$
2a. $x = 2, \quad y = 1.386$
 $x = 2.5, \quad y = 2.291$
2b. $h = 0.5$
 $R \approx \frac{1}{2}(0.5) \left\{ (0+5.505) + 2(0.008 + 1.386 + 2.291 + 3.296 + 0.385) \right\}$
 ≈ 7.36925
 $= 7.37$ (24)

Maths Made Easy © Complete Tuition Ltd 2017

2ci.

$$\int x \ln x \, dx \qquad \text{Parts}: \quad u = \ln x \qquad v' = x \\
u', \frac{1}{x} \qquad v = \frac{1}{2}x^{2} \\
\int x \ln x \, dx = \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x \frac{x^{2}}{x} \, dx \\
= \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x \, dx \\
= \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x \, dx \\
= \frac{1}{2}x^{2} \ln x - \frac{1}{2}x^{2} + c \\
2ci.
$$\int_{-1}^{0} x \ln x \, dx = \left[\frac{1}{2}x^{2} \ln x - \frac{1}{2}x^{2}\right]_{-1}^{0} \\
= \left(\frac{1}{2}(u)^{2} \ln x - \frac{1}{2}(u)^{2}\right) - \left(\frac{1}{2}x^{2} \ln 1 - \frac{1}{2}(1)^{2}\right) \\
= \left(16 \ln 2 - u\right) - \left(-7u\right) \\
= (16 \ln 2 - u) - (-7u) \\
= 16 \ln 2 - 15 \\
3a.
$$\cos 2x + \cos 3y = 1 , \quad -\frac{\pi}{2} \le x \le \frac{\pi}{2} , \quad 0 \le y \le \frac{\pi}{6} \\
3 \sin 3y \, \frac{dy}{dx} = -2 \sin 2x \\
\frac{dy}{dx} = -2 \sin 2x \\
\frac{dy}{dx} = -\frac{2 \sin 2x}{3 \sin 3y} \\
\end{bmatrix}$$$$$$

.


e 2

۰.

.

1

ЗЬ.	when $x = \frac{\pi}{6}$,	
	$\cos(2\pi/6) + \cos 3y = 1$	
3c.	cos 3y = 1/2	1
	$3y = \pi/3$	
	$y = \pi q = P(\pi _6, \pi _q)$	
	At P, $\frac{dy}{dx} = -\frac{2 \sin(2\pi/6)}{3 \sin(3\pi/q)}$	
	$= -\frac{2}{3}$	
	in of tangent = - 2/3	
	$y = \frac{\pi}{9} = -\frac{2}{3}(x - \pi/b)$ ×3	
	$3y - \frac{\pi}{3} = -2x + \frac{\pi}{3}$	
	$qy - \pi = -bx + \pi$	
	$6x + 9y - 2\pi = 0$	
ha.	$Q_{i}, \qquad \underline{\Gamma} = \begin{pmatrix} -b \\ b \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix}$	
	$l_2 \qquad \underline{r} = \begin{pmatrix} -b \\ -\mu \end{pmatrix} + m \begin{pmatrix} 3 \\ -\mu \end{pmatrix}$	
Lib-	A at $\begin{pmatrix} -k \\ + \\ + \end{pmatrix}$	
	$\cos 0 = \frac{a \cdot b}{ a b }$	

Maths Made Easy C Complete Tuition Ltd 2017

.

4

.

~

5a.	$\int \frac{9x+6}{x} dx$	
56	$= \int q + \frac{6}{x} dx$	
	= 9x + 6 lnx + c	
	$\frac{dy}{dx} = \frac{9x+6}{x}y^{1/3}$	
	$\int y^{-1/3} dy = \int \frac{q_{x+6}}{x} dx$	
	$\frac{3}{2}y^{2/3} = 9x + 6lnx + c$	
	when y=8, x=1	
	$\frac{3}{2}(8)^{2/3} = q(1) + 6la1 + c$	
	6 = 9 + c =7	c = -3
	$\frac{3}{2}y^{2/3} = 9x + 6 \ln x - 3$	
	$y^{2/3} = 6x + 4 20x - 2$	* 2/3
	$y^2 = (6x + 42nx - 2)^3$	
6.	$\frac{dA}{dE} = 1.5$	
l (we want dr dt	
i I I	$\frac{dA}{dt}$, $\frac{7}{t} = \frac{dr'}{dt}$	
	$\frac{dF}{dA} \times \frac{dF}{dr} = \frac{dF}{dr}$	

Maths Made Easy © Complete Tuition Ltd 2017

$$A = \pi r^{2}$$

$$\frac{dh}{dr} = 2\pi r = 3 \quad \frac{dr}{dh} = \frac{1}{2\pi r}$$

$$\frac{dr}{dt} = \frac{dh}{dt} \times \frac{dr}{dh}$$

$$= 1.5 \times \frac{1}{2\pi r}$$

$$= 1.5 \times \frac{1}{2\pi r}$$

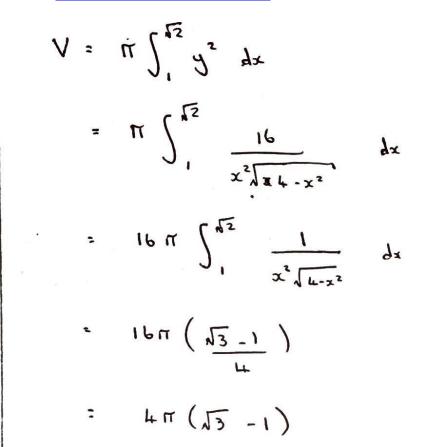
$$= \frac{3}{4\pi r}$$

$$\frac{dr}{r} = \frac{3}{4\pi r}$$

$$\frac{dr}{r} = \frac{3}{\sqrt{\pi}}$$

$$\frac{dr}{r} = \frac{3}{\sqrt$$

,


Maths Made Easy © Complete Tuition Ltd 2017

Ŧa.

$$\begin{array}{rcl} 7k & R & 2 \int_{-k}^{k} y & dx & x = 5t^{2} - tt \\ & & \frac{dx}{dt} = 10t \\ R & = 2 \int_{0}^{3} t(q-t^{2}) tot & dt & \frac{dx}{t} \frac{tt}{3} - \frac{tt}{3} \\ R & = 20 \int_{0}^{3} qt^{2} - t^{4} & dt & \left(\frac{5t^{2} - t + tt}{3} - \frac{t}{3}\right) \\ & = 20 \left[3t^{3} - \frac{1}{5}t^{3}\right]_{*}^{3} \\ & = 20 \left[3t^{3} - \frac{1}{5}t^{3}\right]_{*}^{3} \\ & = 20 \left((3(3)^{3} - \frac{1}{5}(3)^{5}) - (0)\right) \\ & = 6tt8 \\ \hline 8a & \int_{1}^{52} \frac{1}{x^{2} \frac{1}{4tt-x^{2}}} dx & x = 2tos tt \\ & = -2sin tt dt \\ & = -2sin tt dt \\ & = -\frac{1}{4} \int_{\eta_{3}}^{\eta_{4}} sec^{2}tt dt \\ & = -\frac{1}{4} \left[tan tt \right]_{\eta_{3}}^{\eta_{4}} & 2sint \\ & = -\frac{1}{4} \left[tan tt \right]_{\eta_{3}}^{\eta_{4}} & \frac{x}{2} sint \\ & = \frac{\sqrt{3}}{4t} - \frac{1}{4t} \\ & = \frac{\sqrt{3}}{4t} \\ & = \frac{\sqrt{3}}{4t} - \frac{1}{4t} \\ & = \frac{\sqrt{3}}{4t} \\ & = \frac{\sqrt{3}}{4t} - \frac{1}{4t} \\ & = \frac{\sqrt{3}}{4t} \\ & = \frac{\sqrt{3}}{4t} - \frac{1}{4t} \\ & = \frac{\sqrt{3}}{4t} \\ & = \frac{\sqrt{3}}{$$

1

81

Maths Made Easy © Complete Tuition Ltd 2017