AQA, OCR, Edexcel

A Level

A Level Biology

DNA, Translation, Transcription and Classification Answers

Name:

M M E

Mathsmadeeasy.co.uk

Total Marks:

M1.(a) (i) Repeating units / nucleotides / monomer / molecules;
Allow more than one, but reject two
1
(ii) 1. $\mathrm{C}=$ hydrogen bonds;
2. $\mathrm{D}=$ deoxyribose;

Ignore sugar
3. $\mathrm{E}=$ phosphate;

Ignore phosphorus, Ignore molecule
3
(iii)

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1
First mark = names correct
Second mark $=\%$ correct, with adenine as 34%
\qquad ${ }^{2}$
(b) (i) 153 ;
(ii) Some regions of the gene are non-coding / introns / start / stop code / triplet / there are two DNA strands;

Allow addition mutation
Ignore unqualified reference to mutation
Accept reference to introns and exons if given together
Ignore 'junk' DNA / multiple repeats
1 [8]
M2.(a) Translation.
(b) Transfer RNA / tRNA.

1
(c) TAC;

UAC.
2
(d) Have different R group.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1

(e) 1. Substitution would result in CCA / CCC / CCU;
2. (All) code for same amino acid / proline;
3. Deletion would cause frame shift / change in all following codons / change next codon from UAC to ACC.

M3. (a) (i) Phosphate and ribose;
Accept in either order. Both correct for one mark.
For phosphate accept $\mathrm{PO}_{4} / \mathrm{Pi} /$ (P) but not P.
Do not accept phosphorus.
Ignore references to pentose / sugar.
1
(ii) TAGGCA;

1
(b) (i) Does not contain hydrogen bonds / base pairs / contains codons / does not contain anticodon / straight / not folded / no amino acid binding site / longer;

Assume that "it" refers to mRNA.
Do not accept double stranded.
1
(ii) (pre-mRNA) contains introns / mRNA contains only exons;

Assume that "it" refers to pre-mRNA.
Accept non-coding as equivalent to intron.
1
(c) (i)

Part of chromosome	U
Middle	18
End	21

One mark for both figures correct
1
(ii) 1. Have different (base) sequences / combinations of (bases);
2. (Pre-mRNA) transcribed from different DNA / codes for different proteins;

M4.(a) 1. Helicase;
2. Breaks hydrogen bonds;
3. Only one DNA strand acts as template;
4. RNA nucleotides attracted to exposed bases;
5. (Attraction) according to base pairing rule;
6. RNA polymerase joins (RNA) nucleotides together;
7. Pre-mRNA spliced to remove introns.

6 max
M5.(a) (i) (In all organisms / DNA,) the same triplet codes for the same amino acid;

Accept codon / same three bases / nucleotides
Accept plurals if both triplets and amino acids
Reject triplets code for an amino acid
Reject reference to producing amino acid 1
(ii) 64;

$$
\mathbf{1}
$$

(b) Splicing;

Ignore deletion references
Accept RNA splicing
1
(c) (i) 1. (Mutation) changes triplets / codons after that point / causes frame shift;
Accept changes splicing site Ignore changes in sequence of nucleotides / bases
2. Changes amino acid sequence (after this) / codes for different amino acids (after this);
Accept changes primary structure
Reject changes amino acid formed / one amino acid changed
3. Affects hydrogen / ionic / sulfur bond (not peptide bond);
4. Changes tertiary structure of protein (so non-functional);

Neutral 3-D structure
3 max
(ii) 1. Intron non-coding (DNA) / only exons coding;

Context is the intron

Do not mix and match from alternatives
Neutral references to introns removed during splicing

1. and 2. Ignore ref. to code degenerate and get same / different amino acid in sequence
2. (So) not translated / no change in mRNA produced / no effect (on protein) / no effect on amino acid sequence; Accept does not code for amino acids

OR

3. Prevents / changes splicing;
4. (So) faulty mRNA formed;

Accept exons not joined together / introns not removed
5. Get different amino acid sequence;

2 max [8]
M6.(a) 1. Chromosome is formed of two chromatids;
2. (Because) DNA replication (has occurred);
3. (Sister) chromatids held together by centromere.

3
(b) 1. Chromosomes in homologous pair;
2. One of each into daughter cells / haploid number.

2
(c) Separation of (sister) chromatids / division of centromere.

1
(d) 1. Independent segregation (of homologous chromosomes);

Accept random assortment
2. Crossing over / formation of chiasmata.

2 [8]
M7. (a) (i) 22 ;
(ii) 1. Odd number of chromosomes / 33 chromosomes (in leaf cell);
2. Chromosomes cannot pair / cannot undergo meiosis / would result in half chromosomes / cannot form haploid cells;

2
(b) (i) Fast growth / produces crop fast / produces large crop;

Do not insist on relative statement.
Accept similar terms for fast. E.g. "better" growth Do not accept unqualified references to profit.

1
(ii) Leaves less likely to break / higher breaking strength;

1
(c) Low genetic diversity because they are produced by mitosis;

Will all have the same DNA / genes / alleles / will be genetically

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
identical / will be clones;

OR

Low genetic diversity because they are not produced by meiosis;
No crossing over / independent segregation / will not be genetically different;

Independent segregation is the specification term.
Accept other such as random assortment.
2 [7]
M8.(a) (i) 1. Groups within groups;

1. accept idea of larger groups at the top / smaller groups at the bottom
2. No overlap (between groups);

2
(ii) (Grouped according to) evolutionary links / history / relationships / common ancestry;

Neutral: closely related
Neutral: genetically similar 1
(b) (i) 1. (Only) one amino acid different / least differences / similar amino acid sequence / similar primary structure;
2. (So) similar DNA sequence / base sequence; 2
(ii) 1. Compared with humans / not compared with each other; Accept: degenerate code / more than one triplet (codes) for an amino acid
2. Differences may be at different positions / different amino acids affected / does not show where the differences are (in the sequence);
(iii) 1. All organisms respire / have cytochrome c;

Accept: converse arguments for haemoglobin

1. Accept 'more' instead of 'all'
2. Accept 'animals' instead of organisms ${ }^{\boldsymbol{\beta}}$
3. (Cytochrome c structure) is more conserved / less varied (between organisms);
4. Neutral: cytochrome c is conserved 1 max [7]

M9. (a) Shape

1. Different penicillin has different shape / structure / enzyme /
active site has specific shape / structure;
Not different

Binding

2. No longer fits / binds to active site / not complementary to active site / does not form E-S complex;

Consequence

3. (Different) penicillin not broken down;
(b) (i) 1. Kills pathogenic / harmful bacteria / pathogens;
4. Disease less likely / improves health / animals healthier / reduces spread of infection;
5. Faster growth / more productive animals / more food converted to meat / greater survival / lower vet's bills / increased yield / less energy (for "fighting infection");
Principles:
Action of antibiotic. Do not accept stops all disease
Action on health
Effect on production $\mathbf{2}$ max
(ii) 1. (Adding antibiotics) selects in favour of antibiotic resistance / resistant bacteria more likely to survive;
6. Increase in numbers / higher proportion of resistant bacteria;
Penalise immune only on the first occasion it occurs in this part of the question.

2 7]

M10.(a) 1. Recognise / identify / attract same species; Ignore: references to letting them produce fertile offspring
2. Stimulates / synchronises mating / production / release of gametes;
3. Recognition / attraction of mate / opposite sex;

Accept finding a mate
Accept: gender
4. Indication of (sexual) maturity / fertility / receptivity / readiness to mate;
5. Formation of a pair bond / bond between two organisms (to have / raise young).

3 max
(b) 1. Use a (real) male (with intact wings / no wing removed);

Mark ignoring reference to birds / or other types of animals
Accept: use a real cricket, since only males sing
2. Determine (percentage) response (of females compared with L).

Accept: compare results with L
2
(c) 1. Lowest / only 30% courtship with no song / K / (or) courtship still occurred when no song played / K;

Note: throughout, for courtship accept response / stimulation / reaction
Neutral: references to methodology
Answer must make clear there is no song / version K
2. Reduced courtship when no ticks / M / there is some courtship when no ticks / M;
3. Reduced courtship when no chirps / N / there is some courtship when no chirps / N;

Accept: use of figures from the table in an explanation
4. (So) courtship must involve a visual stimulus / other factor involved;
5. Chirps more important as lowest courtship when none / N / ticks less important as similar courtship when changed / M;

Must make comparison to gain mark
6. Data only show presence and absence of chirps / 0 and 7 chirps.

Note: 'courtship still occurred when no sound played so a visual stimulus / other factor /
something else (e.g. pheromone?) must be involved'
$=2$ marks
[9]
M11.(a) (i) 1. Groups within groups;
Accept: idea of larger groups at the top or smaller groups at the bottom
2. No overlap (between groups);

2
(ii) 3 ;

1

(iii) Chordata;

Accept: if phonetically correct eg 'Cordata'

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1
(b) (i) 1. (To provide) genetic variation;

Genetic variation must be directly stated and not implied
2. (Allows) different combinations of maternal and paternal chromosomes / alleles;
Accept: any allele of one gene can combine with any allele of another gene

$$
2
$$

2
(ii) 1. (Zedonk has) 47 / odd / uneven number of chromosomes; Accept: diploid number would be odd
Reject: if wrong number of chromosomes is given
2. Chromosomes cannot pair / are not homologous / chromosome number cannot be halved / meiosis cannot occur / sex cells / haploid cells are not produced;
Accept: cannot have half a chromosome Q Reject: meiosis cannot occur in sex cells

2 [8]
M12.(a) (Different) form / type / version of a gene / different base sequence of a gene;

1
(b) Two / sister chromatids joined by a centromere;

Due to DNA replication; 2
(c) (i) Crossing over; 1

Exchange (of alleles) between chromatids / chromosomes;
Negate first marking point for answers which refer to independent segregation.

> Chiasma / chiasmata = first marking point

1
(ii) Is infrequent / rare;

References to it being 'random', 'occurs by chance' or 'doesn't always occur' should not be credited without a clear idea that it is rare or infrequent.
(d) (i) Three chromosomes shown;

1
One from each homologous pair;
For first mark point allow drawings showing three chromosomes as single or double structures.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(ii) 8;
[9]

M13.(a) (i) Reliable / representative / for statistical tests;
Accept: identify anomalies
Neutral: accurate / valid / bias 1
(ii) 1. Find coordinates (on a grid) / split area into squares / number the sites;

1. Ignore references to tape measures, metre rulers etc
2. Method of generating / finding random numbers eg calculator / computer / random number generator / random numbers table;
3. Accept: numbers out of a hat / use of dice 2
(iii) 1. Breeding (of lizards);

Neutral: weather / climate / hurricanes / hibernation / migration / emigration / immigration
2. Food source / prey;
3. Predator;
4. Variation in malarial infection;
5. Temperature variation;
6. Availability of water eg drought / ̧̧rainy season'

2 max
(b) 1. Number in sample varies;
2. Allow a (valid) comparison;

2
(c) 1. (Overall) positive correlation (for either / both species);

Neutral: only one study / no repeats
2. Reference to (site) $5 / 300$ metres;
3. Limited results for A. wattsi/ small sample / number / percentage infected for A. wattsi;.
(d) (i) 1. Fewer A.wattsi infected / more A. gingivinus infected;
2. Higher number of A.wattsi present when higher percentage / number of A.gingivinus infected / no A.wattsi
present when A.gingivinus has zero infection;
2
(ii) 1. Reduced immunity / increased susceptibility to disease;

1. Accept: idea that energy / resources are used to combat malaria
2. Reduced oxygen transport / uptake / respiration / reduced activity / movement;

2
(iii) 1. There is a probability of less than $1 \% / 0.01$;

1. Reject: probability is / equal to $1 \% / 0.01$;
2. Reject $0.01 \% / 5 \% / 0.05 / 0.05 \%$
3. That result(s) / correlation / it is due to chance;
4. Allow correct interpretation using above (incorrect) figures eg there is a probability of less than 5% that the results are due to chance $=1$ mark

OR

3. There is a probability of more than $99 \% / 0.99$;
4. That result(s) / correlation / it is not due to chance; Note: there is a probability of more than 5% that the results are due to chance $=0$ marks
5. Reject: probability is / equal to 99% / 0.99;
6. Reject $0.99 \% / 95 \% / 0.95$ / 0.95\%
7. Allow correct interpretation of above figures ie $0.99 \% ~ / ~ 95 \% ~ / ~ 0.95 ~ / ~ 0.95 \% ~ b u t ~ r e j e c t ~ i f ~ l e s s ~ t h a n ~$ 2 [15]

M14. (a) Most closely (related) to chimpanzee / most recent common ancestor;

Least (related) to dogfish / least recent common ancestor;
Allow 'chicken is second' to chimpanzee as equivalent to second mark point.
Allow answers which compare similarity in DNA / genetic material.
Marks should not be awarded for answers which only compare amino acid sequences without any indication of relationships.
Allow 'monkey' for chimpanzee and 'fish' for dogfish 1
(b) Is present in all eukaryotes;

1
(c) Reference to base triplet / triplet code / more bases than amino acids / longer base sequence than amino acid sequence;

Introns / non-coding DNA; / same amino acid may be coded for / DNA code is degenerate;

Reject different amino acids are formed / produced. Ignore reference to codon.

M15. (a) 1. Occurs in an unchanging environment;
$+$
2. Selection against extremes / selection for the mean / mean / median / mode unaltered
3. Range / S.D is reduced
4. Increasing proportion of populations becomes well adapted to environment; 4
(b) 1. All plants are acyanogenic below $-4^{\circ} \mathrm{C}$ and (most) cyanogenic above $+10^{\circ} \mathrm{C}$;
2. Cyanogenic plants' cells freeze below -4°;
3. Releasing cyanide (into their own tissues) / damaging / killing plants / disrupting metabolism;
4. Selective advantage not to produce cyanide at $-4^{\circ} \mathrm{C}$;
5. Slugs present at higher temperatures / not usually present / inactive at lower temperatures and cyanide production kills / deters slugs; 5 [10]

M16. (a) Recognition of same species;
Stimulates release of gametes;
Recognition of mate / opposite gender;
Indication of sexual maturity / fertility; 2 max
(b) (i) Internal fertilisation / fertilisation occurs in pouch / limited area;

Q The term fertilisation is not required in the answer but must be implied.

1
(ii) Protection from predators (developing in pouch);

1
(c) (i) Less stress caused to seahorse / quicker / more accurate method / body is curved / head is linear;

Q Do not accept "easier" unless qualified. 1
(ii) Head length proportional to body length / or described;

1
(d) Positive correlation between head / body lengths of male and female / female and male with similar head / body lengths pair together;

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(e) Use line of best fit;

And extrapolate / extend line as required;
2
(f) (Compare) DNA;

Sequence of bases / nucleotides;
Compare same / named protein;
Sequence of amino acids / primary structure;
Immunological evidence - not a mark
Inject (seahorse) protein / serum into animal;
(Obtain) antibodies / serum;
Add protein / serum / plasma from other (seahorse) species;
Amount of precipitate indicates relationship;
Q The marks awarded for reference to DNA and sequence of bases / nucleotides must be in a different context to DNA hybridisation.

M17.(a) 1. Females are (generally) longer / larger / bigger / up to 115(mm) / males are (generally) shorter / smaller / up to $100(\mathrm{~mm})$;

Ignore: tall
Accept: females have a larger / 90 modal / peak / most common value and males have a smaller / 80 modal / peak / most common value Accept mean length of females greater / mean length of males shorter
Reject: use of mean in relation to 80 mm or 90 mm
Reject: Most of the females are 90 mm long / most of the males are 80 mm long
2. Females show a greater range / variation / males show a narrower range / variation.

Accept: correct use of figures from the graph: the range of males is 50 to 100 and of females is 50 to 115 / the spread is 50 for males and 65 for females

2
(b) (i) 2.6 to $2.7=2$ marks;

Incorrect answer but evidence of a numerator of 24180 OR
156×155 or denominator of $9014=1$ mark;
2
(ii) (Fewer plant species) - no mark

1. (So) few(er) habitats / niches;

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

Ignore habitat size
Q Neutral: fewer homes
2. (So) lower diversity of insects / fewer insect species / fewer insect types;
Q Neutral: fewer insects
Accept less variety of insects
3. (So) fewer food sources / less variety of food.

Q Neutral: less food
Ignore references to pesticides, farmers' actions, competition between lizards and evolution

3 [7]

M18.
(a) (i) EITHER: Correct answer: $3.45 / 3.44 / 3.4=2$ marks OR: Understanding of $\sum n(n-1) /$ use of $134 /(2+90+12+30)$ + wrong answer $=1$ mark
(ii) Takes account of number of individuals / abundance / population size (as well as number of species); 1
(b) The species at A / F.spiralis loses less water / loses water less rapidly / loses less mass;

The species at A / F.spiralis better adapted to / can survive where exposed for longer / to drier conditions;

The species at A / F.spiralis avoids competition For named aspect - e.g. light / substratum / space / CO_{2};

ACCEPT converse argument re. F. serratus

3 [6]
M19.(a) Species richness measures only number of (different) species / does not measure number of individuals.

1
(b) Trees vary in height. 1
(c) 1. Index for canopy is 3.73 ;
2. Index for understorey is 3.30 ;
3. Index in canopy is 1.13 times bigger;

If either or both indices incorrect, allow correct calculation from student's values.

3
(d) 1. For Zaretis itys, difference in distribution is probably due to chance / probability of being due to chance is more than 5%;
2. For all species other than Zaretis itys, difference in distribution is (highly) unlikely to be due to chance;

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
3. Because $P<0.001$ which is highly significant / is much lower than 5\%. 3 [8]

M20.(a) PKNJ. 1
(b) Lutra lutra. 1
(c) Bone / skin / preserved remains / museums. 1
(d) 1. (Hunting) reduced population size(s), so (much) only few alleles left;

Accept bottleneck
2. Otters today from one / few surviving population(s);

Accept founder effect
3. Inbreeding.

Allow any two
(e) 1. Population might have been very small / genetic bottleneck;
2. Population might have started with small number of individuals / by one pregnant female / founder effect;
3. Inbreeding.

Allow any two

