AQA, OCR, Edexcel A Level
A Level Biology Cells, Microscopes, Cell Cycle and Immunity Answers
Name:
MMMathsmadeeasy.co.uk
Total Marks:

M1.

(a)

Protein synthesis	L;
Modifies protein	H;
Aerobic respiration	N;

1800-2200; (b)

> 1.8, 2.0 or 2.2 in working or answer = 1 mark. Ignore units in answer.

3

1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

> Accept I / A or I / O for 1 mark but ignore triangle. Accept approx 60mm divided by 30µm for 1 mark 2 [5]

M2.(a) Any five from:

- 1. Cell homogenisation to break open cells;
 - 1. Accept suitable method of breaking open cells.
- 2. Filter to remove (large) debris / whole cells; 2. Reject removes cell walls.
- 3. Use isotonic solution to prevent damage to mitochondria / organelles; 3. Ignore to prevent damage to cells.
- 4. Keep cold to prevent / reduce damage by enzymes / use buffer to prevent protein / enzyme denaturation;
- 5. Centrifuge (at lower speed / 1000 g) to separate nuclei / cell fragments / heavy organelles; 5. Ignore incorrect numerical values.
- Re-spin (supernatant / after nuclei / pellet removed) at higher speed to get 6. mitochondria in pellet / at bottom.

6. Must have location Reject ref to plant cell organelles only once 5 max

Principles: (b)

- 1. Electrons pass through / enter (thin) specimen;
- 2. Denser parts absorb more electrons;
- 3. (So) denser parts appear darker;
- 4. Electrons have short wavelength so give high resolution; Allow maximum of 3 marks Principles:

Limitations:

- 5. Cannot look at living material / Must be in a vacuum;
- 6. Specimen must be (very) thin;
- 7. Artefacts present;
- Complex staining method / complex / long preparation time; 8. 9.
 - Image not in 3D / only 2D images produced.

visit <u>http:</u>	<u>//WWV</u>	<u>w.matns</u>	<u>madeeasy.co.uk/</u> for mo <u>Limitations:</u> Context o oxplaining how TEM	of limitation must	
			explaining how TEM E.g "allows you to se limitation		a thin section is used" is not a
			Allow maximum of 3	marks	
			Ignore ref to colour	5 max	[10]
			-		
M3. (a)	1. 2. 3.	Solu	b break open cells <u>and</u> tion is cold / isotonic / ond pellet is chloroplas	buffered;	3
					·
(b)	1. 2.		roma; anum. Accept	t thylakoid	2
	(1e	ength of	chloroplast		
(c)	C	lengt	th of bar Jum		1
(d)	Mit				n / lysosome / cell-surface 1 max [7]
M4. (a)	(i)	Anaph	ase		1
	(ii)	1.	Sister / identical chro	matids / identical	chromosomes;
			Reject: Homologous	chromosomes s	eparate.
			Allow any reference e.g. same DNA	to chromatids / c	hromosomes being identical
		2.	To (opposite) poles /	ends / sides;	2
(b)	(i)	1.	8.4 / cells with twice prophase / metaphas		eplicated DNA / late interphase /
			Any reference to inte interphase.	erphase must sug	gest towards end of
			'Chromosomes repli	cate' is not enoug	gh for DNA replicates.
		2.	4.2 = DNA not replica divided / finished mit		rphase / telophase / cell just 2
	(ii)	2.1;			1 6]
M5.	(a)	1.	Growth / increase in co Ignore growth of cell		
	2.	Rep	lace cells / repair tissu Ignore repair cells Reject bacteria	e / organs / body	;
	3.	Gen	etically identical cells; <i>'Produces 2 genetica</i> as MP3	ally identical cells	' does not reach MP1 as well
	4.	Asex	kual reproduction / clor Allow example or de	-	

2 max

- (b) (i) (Ensures) representative (sample); Accept find some cells in mitosis / not in interphase. Accept 'more reliable' only if linked to percentage (of cells). 'Improves reliability' on its own does not gain this mark Neutral: Large sample
 1
 - (ii) 1. A = metaphase;
 - 2. Chromosome / chromatids lie on equator; Reject homologous chromosomes Allow centre / middle
 - 3. B = anaphase;
 - Chromatids / chromosomes separating / moving apart / moving to poles;
 Reject homologous chromosomes 4
- (c) 2 hours / 120 minutes;
 Allow 1 mark if working shows candidate understood that mitosis would take 10%
 2 [9]
- M6.(a) 1. Strands separate / H-bonds break;
 - 1. **Q** Neutral: strands split
 - 1. Accept: strands unzip
 - 2. DNA helicase (involved);
 - 3. Both strands / each strand act(s) as (a) template(s);
 - 4. (Free) nucleotides attach;
 - 4. Neutral: bases attach
 - 4. Accept: nucleotides attracted
 - 5. Complementary / specific base pairing / AT and GC;
 - 6. DNA polymerase joins nucleotides (on new strand);
 6. Reject: if wrong function of DNA polymerase
 - 7. H-bonds reform;
 - Semi-conservative replication / new DNA molecules contain one old strand and one new strand;
 Reject: if wrong context e.g. new DNA molecules contain half of each original strand

1

6 max

- (b) (i) 18; Do not accept 17.5
 - (ii) 10; 1
 - (iii) 1. Horizontal until 18 minutes; Allow + / - one small box
 - 2. (Then) decreases as straight line to 0 µm at 28 minutes;
 2. Allow lines that start from the wrong place, ending at 0 at 28 minutes

(c) (i) Two marks for correct answer of 19.68 or 19.7;; Accept 19hrs 41mins

> One mark for incorrect answers in which candidate clearly multiplies by 0.82; Allow one mark for incorrect answers that clearly show 82% of 24 (hours) 2

- (ii) 1. No visible chromosomes / chromatids / visible nucleus: 1
- (iii) **D** (no mark)
 - 1. Lower % (of cells) in interphase / higher % (of cells) in mitosis / named stage of mitosis;
 - 1. Accept: 'less' or 'more' instead of '%'
 - 1. Do not accept: higher % (of cells) in each / all stage(s)
 - 2. (So) more cells dividing / cells are dividing quicker;
 - 2. Accept: uncontrolled cell division
 - 2. Do not award if Tissue **C** is chosen 2 [15]

M7.(a) Calculations made (from raw data) / raw data would have recorded initial and final masses.

- Add 4.5 cm³ of (1.0 mol dm⁻³) solution to 25.5 cm³ (distilled) water. (b) If incorrect, allow 1 mark for solution to water in a proportion of 0.15:0.85
- Water potential of solution is less than / more negative than that of potato 1. (c) tissue; Allow Ψ as equivalent to water potential
 - 2. Tissue loses water by osmosis.
- (d) 1. Plot a graph with concentration on the x-axis and percentage change in mass on the y-axis;
 - 2. Find concentration where curve crosses the x-axis / where percentage change is zero:

2

1

- 3. Use (another) resource to find water potential of sucrose concentration (where curve crosses x-axis). 3 [8]
- M8. (Plasma / cell) membrane; (a) Reject: nuclear membrane

 - Nucleus / nuclear envelope / nuclear membrane / nucleolus; (b) Accept: membrane-bound organelles only if an example has not been given

Mitochondrion;

(Smooth / rough) ER;

Lysosome;

Microvillus / brush border: Neutral: villi

Golgi;

Linear / non-circular DNA / chromosome;

Neutral: DNA strands

80S / denser / heavier / larger ribosomes;

Neutral: ribosomes 2 max

(c) (i) Higher resolution / higher (maximum) magnification / higher detail (of image);

OR

Allows internal details / structures within (cells) to be seen / cross section to be taken;

1

Accept: 'better' instead of 'higher' Neutral: shorter wavelength Reject: longer wavelength Reject: can be used on living specimens **Q** Do not accept 'clearer' image

(ii) Thin sections do not need to be prepared / shows surface of specimen / can have 3-D images;

> Accept: can be used on thick(er) specimens Reject: can be used on living specimens Neutral: refs. to staining / preparation / artefacts / colour 1

(d) Two marks for correct answer of 0.42 - 0.46;;

One mark for incorrect answers in which candidate clearly divides measured width by magnification;

Correct answer = 2 marks outright Accept: 0.4 or 0.5 only if working is correct for 2 marks Do not award a mark for 0.4 or 0.5 if there is no working out Ignore rounding up 2

(e) As height increases, the number of deaths decrease / inversely proportional / negative correlation;

Correct reference to increase / decrease at 14-30m;

Accept: converse statement Must give a trend and not simply give individual points Do not penalise for 'more likely to get cholera' 2 [9]

M9.(a) 0.22;

1

- (b) 1. Uptake in flask **G** much greater than in flask **F**;
 - 2. Showing use of ATP in flask **G**;
 - 3. Sodium ion concentration in flask **G** falls to zero;
 - 4. Showing uptake against a concentration gradient. 4
- (c) 1. (Uptake of sodium ions occurring by) <u>facilitated</u> diffusion;
 2. Equilibrium reached / sodium ion concentrations in solution and in cells the same.
 2 [7]

M10. (a) Does not have the resolution / cannot distinguish between points this close together; As light has longer wavelength; The key ideas in marking this part of the question are resolution and wavelength.

Visit <u>http</u> (b)		<u>.mathsmadeeasy.co.uk/</u> for more fantastic resources. d soluble / small / non-polar / not charged; 1
(c)	(i)	Concentration <u>of sodium ions</u> (outside cell); As concentration / independent variable increases so does the rate of diffusion; 2
	(ii)	Sodium ions are passing through the channels / pores at their maximum rate; Rate is limited by the number of sodium channels / another limiting factor; 2 [7]
M11.	(a)	Peptide; Q Do not accept polypeptide Neutral: covalent 1
(b)	(F)	H J E (K); <i>All three boxes correct = 2 marks</i> <i>Two boxes correct = 1 mark</i> 2
(c)	(Site	e of aerobic) respiration;
		ease ATP / energy for active transport / transport against the concentration dient / protein synthesis / exocytosis;
		Q Reject: anaerobic respiration
		Q Reject: produces / makes energy
		Accept: produces ATP for energy
		Reject: produces ATP for respiration Neutral: protein secretion 2
(d)	(i)	Breaks open cells / disrupts cell membrane / releases cell contents / releases organelles / break up cells;
		Reject: breaks down cell wall
		Neutral: separates the cells
		Reject: breaks up cells so they can be separated
		Reject: breaks up / separates organelles 1
	(ii)	Removes (cell) debris / complete cells / tissue;
		Neutral: to isolate organelle G / mitochondria
		Neutral: removes unwanted substances / impurities
		Reject: removes organelles / cell walls 1
	(iii)	Reduces / prevents <u>enzyme</u> activity;
	()	Reject: ref. to denaturation 1
	(iv)	Prevents osmosis / no (net) movement of water / water does not enter organelle / water does not leave organelle;
		So organelle / named organelle is not damaged / does not burst / does not shrivel;
		Neutral: ref. to water potential
		Q Ref. to cells rather than organelles negates the second mark only
		Reject: ref. to turgid / flaccid for second mark
		Reject: organelle 'explodes' for second mark 2 [10]
M12. (a)	Varia	able that is changed;
. ,		Reject 'the variable that changes' 1

- Idea of a confounding variable; (b) 1.
 - 2. (So) genetically similar; 2. Do not accept 'genetically identical / same DNA'.
 - 3. (So) have similar salt tolerance / response to salt water / response to watering treatment;
 - 4. (So) have similar yield / mass of seeds; Do not accept 'amount / number of seeds' or 'growth rate' 2 max
- (c) Mitosis; 1

Ignore cell division

Irrigation with sea water / C / D increased yield compared with no irrigation / (d) 1. **A**;

For 'yield' accept 'mass of seed' throughout.

2. Yield was lower when irrigated with sea water / C / D compared with fresh water / B:

Only penalise once for use of 'amount / number of seeds'.

- 3. Yield was lower when watered with sea water throughout growth and seed formation / C than when watered with sea water just at seed formation / D; Accept use of figures from table. 'It' refers to watering with seawater / mixture. 2 max
- (e) 1. Irrigation with sea water / **C** / **D** increases concentration of salt in soil; Ignore reference to standard deviation / quality of the data.
 - 2. Lower water potential in the soil linked to reduced uptake of water;
 - 3. Salt concentration in the soil might / might not increase in the future; Mark point 3 includes the principle for mark point 1 so mp3 gains 2 marks (for mp1 and mp3)
 - 4. Might decrease plant growth / yield in the future;
 - 5. Less food / fewer seeds for future planting; Mp 3 and 4. Allow 'further' for the idea of 'in the future'. 3 max **[9**]
- M13.(a) 1. Facilitated diffusion involves channel or carrier proteins whereas active transport only involves carrier proteins:
 - Facilitated diffusion does not use ATP / is passive whereas active transport 2. uses ATP:
 - 3. Facilitated diffusion takes place down a concentration gradient whereas active transport can occur against a concentration gradient. Since 'contrast', both sides of the differences needed 3

(b) 3.3:1.

Correct answer = 2 marks If incorrect, allow 1 mark for 470–360 / 60 for rate in second hour 2

Page 8^{because} by diffusion (only); (c) 1. Group A – initial uptake slower

- Group A levels off because same concentrations inside cells and outside cells / reached equilibrium;
- 3. Group **B** uptake faster because by diffusion plus active transport;
- 4. Group **B** fails to level off because uptake against gradient / no equilibrium to be reached;
- 5. Group **B** rate slows because few / fewer chloride ions in external solution / respiratory substrate used up.

4 max [9]

- M14.(a) 2 marks for correct answer 0.2Accept concentration ÷ time1 mark for 6 / 30;2
 - (b) 1. (Uptake) decreases / slower, <u>then</u> no further uptake / uptake stops;
 - 2. (Decreases) to 20 22 / no uptake after 20 / 22 minutes; Accept: (only) 1.6 (arbitrary units) absorbed / (only) drops to 8.4 Is for correct use of data from graph
 2
 - (c) 1. Stops / reduces / inhibits respiration; Accept: inhibits respiratory enzymes
 - 2. No / less energy released / ATP produced; Ignore: less energy produced / made
 - (ATP / energy needed) for active transport;
 Accept ref to Na⁺ pump / description of active transport Ignore consequences of less Na⁺ in cel
 3 [7]

M15.(a) 1. Antibody has tertiary structure;2. Complementary to binding site on protein.

- (b) 1. Prevents false negative results;
 2. (Since) shows antibody A has moved up strip / has not bound to any *Plasmodium* protein. 2
- (c) 1. Person is infected with *Plasmodium* / has malaria;
 - 2. Infected with (*Plasmodium*) vivax;
 - 3. Coloured dye where antibody **C** present;
 - That only binds to protein from vivax / no reaction with antibody for falciparum.
 Person is infected with P. vivax / Plasmodium vivax = 2 marks (MP1 and MP2)
 4 [8]

M16. (a)

Nucleus	Number of chromosomes	Mass of DNA / arbitrary units	
At telophase of mitosis	26;	30;	
From a sperm cell	13;	15;	
4			

(b) Cancer cells often have faulty / damaged DNA;

Protein / p53 faulty / not made;

Cell (with faulty / DNA) divides /

completes cell cycle;

2

Visit <u>http://www.mathsmadeeasy.co.uk/</u> for more fantastic resources. Uncontrolled division produces cancer; p53 refers to the protein so do not accept reference to p53 mutating. 3 (c) (i) Interphase / S phase / synthesis phase; 1 (ii) Anaphase / A; [9] 1 M17.(a) Regulator protein. Accept regulator protein antigen Reject regulator protein receptor Ignore regular protein 1 (b) Lipid soluble / hydrophobic 1. Enters through (phospholipid) bilayer 2. OR 3. (Protein part of) LDL attaches to receptor 4. Goes through carrier / channel protein. 4. Accept by facilitated diffusion or active transport 4. Reject active transport through channel protein 2 (C) Any **two** from: (Monoclonal antibody) has a specific tertiary structure / variable region / is 1. complementary to regulator protein Do not award MP1 if reference to active site. 2. Binds to / forms complex with (regulator protein) "It" refers to monoclonal antibody in MP1 and MP2 (So regulator protein) would not fit / bind to the receptor / is not 3. complementary to receptor 3. Reject receptor on LDL 2 max (d) 1. Injection with salt solution 1. Accept inject placebo in salt solution

2. Otherwise treated the same.

[7]

2

M18.(a) (i) 1. (Tumour suppressor) gene inactivated / not able to control / slow down cell division;

- Rate of cell division too fast / out of control.
 1 and 2 Accept: mitosis
 1 and 2 Reject: meiosis
- (ii) 1. (Genetic) code degenerate; Accept: codon for triplet Accept description of degenerate code, e.g. another triplet codes for the same amino acid

2

- 2.Mutation in intron.Accept: mutation in non-coding DNA1 max
- (b) 1. Antibody has specific tertiary structure / binding site / variable region; Do not accept explanations involving undefined antigen
 - Complementary (shape / fit) to receptor protein / GF / binds to receptor protein / to GF;

Ignore: same shape as receptor protein / GF

- 3. Prevents GF binding (to receptor). 3 [6]
- M19.(a) Has more than one / four polypeptide chains / made up of polypeptide chains; 1
 - (b) 1. Antibody / variable region has specific amino acid sequence / primary structure;
 - 2. The shape / tertiary structure of the binding site is complementary to / fits / binds with these antigens;

2. Do not accept active site for this point.

- 3. Forms complex between antigen and antibody; 3 [4]
- M20.(a) 1. Infected by / susceptible to (other) pathogen(s) / named disease caused by a pathogen (from environment); Context is where immune system cannot prevent or stop these events Allow attack / kill
 - 2. Pathogen(s) reproduce / cause diease (in host); MPs not given in context of HIV
 - 3. Damage cells / tissues / organs;
 - 4. Release toxins;

3 max

- (b) (i) 1. (HIV enters cells) before antibodies can bind to / destroy it; Ignore SAFETY comments 1. and 2. Relate to antibodies
 - 2. Antibodies cannot enter cells (to destroy HIV) / stay in blood;

OR

- (Enters cells) before (secondary) immune response caused / before memory cells have time to respond;
 and 4. Relate to virus
- 4. So no antibodies present (to attack HIV);

OR

- Vaccine taken up too quickly to cause immune response;
 and 6. Relate to vaccine
- 6. So no antibodies / memory cells formed; 2 max
- (ii) 1. Antigen (on HIV) changes; Accept mutates
 - 2. (Specific) antibody / receptor no longer binds to (new) antigen; Ignore SAFETY comments

OR

- 3. Many different strains of HIV / many antigens present on HIV;
- 4. Not possible to make a vaccine for all antigens / vaccine may not stimulate an antibody for a particular antigen;

2 max

(c) 3 suitable suggestions;;; QWC ignore reference to HIV cells

E.g.

- 1. Inactive virus may become active / viral transformation;
- 2. Attenuated virus might become harmful;
- 3. Non-pathogenic virus may mutate and harm cells;
- 4. Genetic information / protein (from HIV) may harm cells;
- 5. People (may) become / test HIV positive after vaccine used; Vaccinated people may develop disease from a different strain to that in the vaccine
- 6. This may affect their work / life; May continue high risk activities and develop or pass on HIV

2

4

- M21. (a) molecule / part of molecule / protein / glycoprotein / named molecule; that stimulates an immune response / eq;
 - (b) divide by mitosis / form clones; produce plasma cells; (plasma cells) make antibodies;
 (plasma cells) produce memory cells;

(c)	 (i) glycoprotein AND different shape to body proteins / RNA and reverse transcriptase inside virus / phospholipids same as body's / on the surface of the virus; 		
	(ii) 187.5;; Accept 187 – 188 1 mark for HIV = 80nm; 2 max [9]		
M22.	 (a) divide by mitosis / form clones; produce plasma cells; (plasma cells) make antibodies; (plasma cells) produce memory cells; 	4	
(b)	glycoprotein; different shape to body proteins / body phospholipids are the same / located on the outside of the cell / the haemoglobin is located inside the cell;	2	
M23. (a)	 (To diagnose AIDS, need to look for / at) 1. (AIDS-related) symptoms; 2. Number of <u>helper</u> T cells. Neutral: 'only detects HIV antibodies' as given in the question stem 	2	[6]
b)	1. HIV antibody is not present; Accept HIV antibodies will not bind (to antigen)		
	2. (So) second antibody / enzyme will not bind / is not present.	2	
(c)	 Children receive (HIV) antibodies from their mothers / maternal antibodies; (So) solution will always turn blue / will always test positive (before 18 months). Allow 1 mark for the suggestion that the child does not produce antibodies yet so test may be negative 	2	
(d)	 (Shows that) 1. Only the enzyme / nothing else is causing a colour change; 2. Washing is effective / all unbound antibody is washed away. 	2	[8]

- **M24.**(a) Any two from:
 - 1.
 - 2.
 - (Decrease linked to) few(er) cases of whooping cough; (Decrease linked to) risk of / fear of side effects; Insufficient vaccine available / Page 13 Page 13^{too expensive to produce /} 3.

distribute.

- 3. Too expensive unqualified is insufficient for mark
- (b) 1. Vaccination rate increases;
 - 2. Fewer people to spread the disease / whooping cough / more people immune / fewer susceptible.
 - 2. Neutral greater herd effect
 - 2. Allow description of immune
 - **Q** Reject 'resistant'.

2

2 max

- (c) 1. More people are immune / fewer people carry the pathogen; *If neither point 1 or 2 awarded Herd immunity = 1 mark Unvaccinated does not mean infected 1. Q Do not accept disease for pathogen*
 - 2. So susceptible / unvaccinated people less likely to contact infected people.

2