AQA, OCR, Edexcel

A Level

A Level Biology
 Cells, Microscopes, Cell Cycle and Immunity Answers

Name:

M M E

Mathsmadeeasy.co.uk

Total Marks:

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

M1.
(a)

Protein synthesis	$\mathbf{L} ;$
Modifies protein	$\mathbf{H} ;$
Aerobic respiration	$\mathbf{N} ;$

3
(b) 1800-2200;
$1.8,2.0$ or 2.2 in working or answer $=1$ mark. Ignore units in answer.

1 mark for an incorrect answer in which student clearly divides measured length by actual length (of scale).

Accept I/ A or I O O for 1 mark but ignore triangle.
Accept approx 60 mm divided by $30 \mu \mathrm{~m}$ for 1 mark 2
M2.(a) Any five from:

1. Cell homogenisation to break open cells;
2. Accept suitable method of breaking open cells.
3. Filter to remove (large) debris / whole cells;
4. Reject removes cell walls.
5. Use isotonic solution to prevent damage to mitochondria / organelles;
6. Ignore to prevent damage to cells.
7. Keep cold to prevent / reduce damage by enzymes / use buffer to prevent protein / enzyme denaturation;
8. Centrifuge (at lower speed / 1000 g) to separate nuclei / cell fragments / heavy organelles; 5. Ignore incorrect numerical values.
9. Re-spin (supernatant / after nuclei / pellet removed) at higher speed to get mitochondria in pellet / at bottom.
10. Must have location

Reject ref to plant cell organelles only once 5 max
(b) Principles:

1. Electrons pass through / enter (thin) specimen;
2. Denser parts absorb more electrons;
3. (So) denser parts appear darker;
4. Electrons have short wavelength so give high resolution;

Principles: Allow maximum of 3 marks

Limitations:

5. Cannot look at living material / Must be in a vacuum;
6. Specimen must be (very) thin;
7. Artefacts present;
8. Complex staining method / complex / long preparation time;
9. Image not in 3D / only 2D images produced.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
Limitations:Context of limitation must be clear, not simply explaining how TEM works
E.g "allows you to see organelles as a thin section is used" is not a limitation
Allow maximum of 3 marks
Ignore ref to colour [10]
M3.(a) 1. How to break open cells and remove debris;
2. Solution is cold / isotonic / buffered;
3. Second pellet is chloroplast. 3
(b) 1. A stroma;
2. B granum. Accept thylakoid 2
(c) $\quad\left(\frac{\text { length of chloroplast }}{\text { length of bar }}\right)_{\mu \mathrm{m}}$ 1
(d) Two of the following for one mark: Mitochondrion / ribosome / endoplasmic reticulum / lysosome / cell-surface membrane.

M4.(a) (i) Anaphase 1
(ii) 1. Sister / identical chromatids / identical chromosomes;

Reject: Homologous chromosomes separate.
Allow any reference to chromatids / chromosomes being identical e.g. same DNA
2. To (opposite) poles / ends / sides;

2
(b) (i) 1.8 .4 / cells with twice DNA content $=$ replicated DNA / late interphase / prophase / metaphase / anaphase;
Any reference to interphase must suggest towards end of interphase.
'Chromosomes replicate' is not enough for DNA replicates.
2. $\quad 4.2=$ DNA not replicated / (early) interphase / telophase / cell just divided / finished mitosis;

2
(ii) 2.1;

M5. (a) 1. Growth / increase in cell number;
Ignore growth of cells
2. Replace cells / repair tissue / organs / body;

Ignore repair cells
Reject bacteria
3. Genetically identical cells;
'Produces 2 genetically identical cells' does not reach MP1 as well as MP3
4. Asexual reproduction / cloning;

Allow example or description

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(b) (i) (Ensures) representative (sample);

Accept find some cells in mitosis / not in interphase.
Accept 'more reliable' only if linked to percentage (of
cells). 'Improves reliability' on its own does not gain this mark
Neutral: Large sample
(ii) 1. $\mathrm{A}=$ metaphase;
2. Chromosome / chromatids lie on equator; Reject homologous chromosomes Allow centre / middle
3. $\mathrm{B}=$ anaphase;
4. Chromatids / chromosomes separating / moving apart / moving to poles; Reject homologous chromosomes
(c) 2 hours / 120 minutes;

Allow 1 mark if working shows candidate understood that mitosis would take 10\%

2 [9]
M6.(a) 1. Strands separate / H-bonds break;

1. Q Neutral: strands split
2. Accept: strands unzip
3. DNA helicase (involved);
4. Both strands / each strand act(s) as (a) template(s);
5. (Free) nucleotides attach;
6. Neutral: bases attach
7. Accept: nucleotides attracted
8. Complementary / specific base pairing / AT and GC;
9. DNA polymerase joins nucleotides (on new strand);
10. Reject: if wrong function of DNA polymerase
11. H -bonds reform;
12. Semi-conservative replication / new DNA molecules contain one old strand and one new strand;
13. Reject: if wrong context e.g. new DNA molecules contain half of each original strand
(b) (i) 18; Do not accept $17.5 \quad 1$
(ii) 10; 1
(iii) 1. Horizontal until 18 minutes;

Allow + / - one small box
2. (Then) decreases as straight line to $0 \mu \mathrm{~m}$ at 28 minutes;
2. Allow lines that start from the wrong place, ending at 0 at 28 minutes

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(c) (i) Two marks for correct answer of 19.68 or 19.7;;

Accept 19hrs 41mins
One mark for incorrect answers in which candidate clearly multiplies by 0.82 ;
Allow one mark for incorrect answers that clearly show 82\% of 24 (hours)

2
(ii) 1. No visible chromosomes / chromatids / visible nucleus; $\quad 1$
(iii) \mathbf{D} (no mark)

1. Lower \% (of cells) in interphase / higher \% (of cells) in mitosis / named stage of mitosis;
2. Accept: 'less' or 'more' instead of '\%'
3. Do not accept: higher \% (of cells) in each / all stage(s)
4. (So) more cells dividing / cells are dividing quicker;
5. Accept: uncontrolled cell division
6. Do not award if Tissue \boldsymbol{C} is chosen

M7.(a) Calculations made (from raw data) / raw data would have recorded initial and final masses.
(b) Add $4.5 \mathrm{~cm}^{3}$ of $\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ solution to $25.5 \mathrm{~cm}^{3}$ (distilled) water.

If incorrect, allow 1 mark for solution to water in a proportion of 0.15:0.85

2
(c) 1. Water potential of solution is less than / more negative than that of potato tissue; Allow Ψ as equivalent to water potential
2. Tissue loses water by osmosis.

2
(d) 1. Plot a graph with concentration on the x-axis and percentage change in mass on the y-axis;
2. Find concentration where curve crosses the x-axis / where percentage change is zero;
3. Use (another) resource to find water potential of sucrose concentration (where curve crosses x-axis). [8]

M8. (a) (Plasma / cell) membrane;
Reject: nuclear membrane 1
(b) Nucleus / nuclear envelope / nuclear membrane / nucleolus;

Accept: membrane-bound organelles only if an example has not been given

Mitochondrion;
(Smooth / rough) ER;
Lysosome;
Microvillus / brush border;
Neutral: villi
Golgi;

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
Linear / non-circular DNA / chromosome;
Neutral: DNA strands
80 S / denser / heavier / larger ribosomes;
Neutral: ribosomes $\mathbf{2}$ max
(c) (i) Higher resolution / higher (maximum) magnification / higher detail (of image);

OR

Allows internal details / structures within (cells) to be seen / cross section to be taken;

Accept: 'better' instead of 'higher'
Neutral: shorter wavelength
Reject: longer wavelength
Reject: can be used on living specimens
Q Do not accept 'clearer' image 1
(ii) Thin sections do not need to be prepared / shows surface of specimen / can have 3-D images;

Accept: can be used on thick(er) specimens
Reject: can be used on living specimens
Neutral: refs. to staining / preparation / artefacts / colour 1
(d) Two marks for correct answer of $0.42-0.46$;;

One mark for incorrect answers in which candidate clearly divides measured width by magnification;

Correct answer = 2 marks outright
Accept: 0.4 or 0.5 only if working is correct for 2 marks
Do not award a mark for 0.4 or 0.5 if there is no working out Ignore rounding up 2
(e) As height increases, the number of deaths decrease / inversely proportional / negative correlation;

Correct reference to increase / decrease at 14-30m;
Accept: converse statement
Must give a trend and not simply give individual points
Do not penalise for 'more likely to get cholera' 2 [9]
M9.(a) 0.22;
1
(b) 1. Uptake in flask \mathbf{G} much greater than in flask \mathbf{F};
2. Showing use of ATP in flask \mathbf{G};
3. Sodium ion concentration in flask \mathbf{G} falls to zero;
4. Showing uptake against a concentration gradient.
(c) 1. (Uptake of sodium ions occurring by) facilitated diffusion;
2. Equilibrium reached / sodium ion concentrations in solution and in cells the same. 2 [7]

M10. (a) Does not have the resolution / cannot distinguish between points this close together; As light has longer wavelength;
The key ideas in marking this part of the question are resolution and wavelength.
${ }^{2}$ Page 6

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(b) Lipid soluble / small / non-polar / not charged;
(c) (i) Concentration of sodium ions (outside cell);

As concentration / independent variable increases so does the rate of diffusion; 2
(ii) Sodium ions are passing through the channels / pores at their maximum rate; Rate is limited by the number of sodium channels / another limiting factor; 2 [7]

M11. (a) Peptide;
Q Do not accept polypeptide Neutral: covalent
1
(b) (F) $\mathrm{H} J \mathrm{E}(\mathrm{K})$;

All three boxes correct $=2$ marks Two boxes correct = 1 mark 2
(c) (Site of aerobic) respiration;

Release ATP / energy for active transport / transport against the concentration gradient / protein synthesis / exocytosis;

Q Reject: anaerobic respiration
Q Reject: produces / makes energy
Accept: produces ATP for energy
Reject: produces ATP for respiration
Neutral: protein secretion
(d) (i) Breaks open cells / disrupts cell membrane / releases cell contents / releases organelles / break up cells;

Reject: breaks down cell wall
Neutral: separates the cells
Reject: breaks up cells so they can be separated
Reject: breaks up / separates organelles 1
(ii) Removes (cell) debris / complete cells / tissue;

Neutral: to isolate organelle \boldsymbol{G} / mitochondria
Neutral: removes unwanted substances / impurities
Reject: removes organelles / cell walls 1
(iii) Reduces / prevents enzyme activity;

Reject: ref. to denaturation
1
(iv) Prevents osmosis / no (net) movement of water / water does not enter organelle / water does not leave organelle;

So organelle / named organelle is not damaged / does not burst / does not shrivel;

Neutral: ref. to water potential
Q Ref. to cells rather than organelles negates the second mark only
Reject: ref. to turgid / flaccid for second mark
Reject: organelle 'explodes' for second mark 2 [10]
M12.(a) Variable that is changed;
Reject 'the variable that changes'

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(b) 1. Idea of a confounding variable;
2. (So) genetically similar;
2. Do not accept 'genetically identical / same DNA'.
3. (So) have similar salt tolerance / response to salt water / response to watering treatment;
4. (So) have similar yield / mass of seeds;

Do not accept 'amount / number of seeds' or 'growth rate' 2 max
(c) Mitosis;

Ignore cell division 1
(d) 1. Irrigation with sea water / C / D increased yield compared with no irrigation / A;

For 'yield' accept 'mass of seed' throughout.
2. Yield was lower when irrigated with sea water / C / D compared with fresh water / B;

Only penalise once for use of 'amount / number of seeds'.
3. Yield was lower when watered with sea water throughout growth and seed formation / C than when watered with sea water just at seed formation / D;

Accept use of figures from table.
'It' refers to watering with seawater/mixture.
2 max
(e) 1. Irrigation with sea water / C / D increases concentration of salt in soil; Ignore reference to standard deviation / quality of the data.
2. Lower water potential in the soil linked to reduced uptake of water;
3. Salt concentration in the soil might / might not increase in the future;

Mark point 3 includes the principle for mark point 1 so mp3 gains 2 marks (for mp1 and mp3)
4. Might decrease plant growth / yield in the future;
5. Less food / fewer seeds for future planting;

Mp 3 and 4. Allow 'further' for the idea of 'in the future'. 3 max [9]
M13.(a) 1. Facilitated diffusion involves channel or carrier proteins whereas active transport only involves carrier proteins;
2. Facilitated diffusion does not use ATP / is passive whereas active transport uses ATP;
3. Facilitated diffusion takes place down a concentration gradient whereas active transport can occur against a concentration gradient.

Since 'contrast', both sides of the differences needed 3
(b) 3.3:1.

Correct answer = 2 marks
If incorrect, allow 1 mark for 470-360 / 60 for rate in second hour 2
(c) 1. Group \mathbf{A} - initial uptake slower Page 8 because by diffusion (only);

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
2. Group \mathbf{A} - levels off because same concentrations inside cells and outside cells / reached equilibrium;
3. Group B - uptake faster because by diffusion plus active transport;
4. Group B fails to level off because uptake against gradient / no equilibrium to be reached;
5. Group B - rate slows because few / fewer chloride ions in external solution / respiratory substrate used up.

4 max

M14. (a) 2 marks for correct answer 0.2
Accept concentration \div time 1 mark for $6 / 30$; 2
(b) 1. (Uptake) decreases / slower, then no further uptake / uptake stops;
2. (Decreases) to 20-22 / no uptake after 20 / 22 minutes;

Accept: (only) 1.6 (arbitrary units) absorbed / (only) drops to 8.4 Is for correct use of data from graph 2
(c) 1. Stops / reduces / inhibits respiration;

Accept: inhibits respiratory enzymes
2. No / less energy released / ATP produced;

Ignore: less energy produced / made
3. (ATP / energy needed) for active transport;

Accept ref to Na^{+}pump / description of active transport
Ignore consequences of less Na^{+}in cel
3 [7]
M15.(a) 1. Antibody has tertiary structure;
2. Complementary to binding site on protein.

2
(b) 1. Prevents false negative results;
2. (Since) shows antibody A has moved up strip / has not bound to any Plasmodium protein.
(c) 1. Person is infected with Plasmodium / has malaria;
2. Infected with (Plasmodium) vivax;
3. Coloured dye where antibody C present;
4. That only binds to protein from vivax / no reaction with antibody for falciparum.

Person is infected with P. vivax / Plasmodium vivax $=2$ marks
(MP1 and MP2)
4
[8]
M16.
(a)

Nucleus	Number of chromosomes	Mass of DNA / arbitrary units
At telophase of mitosis	$26 ;$	$30 ;$
From a sperm cell	$13 ;$	$15 ;$

(b) Cancer cells often have faulty / damaged DNA;

Protein / p53 faulty / not made;
Cell (with faulty / DNA) divides /

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
Uncontrolled division produces cancer;
p53 refers to the protein so do not accept reference to p53
mutating.
3
(c) (i) Interphase / S phase / synthesis phase; 1
(ii) Anaphase / A; 1 [9]

M17.(a) Regulator protein.
Accept regulator protein antigen
Reject regulator protein receptor
Ignore regular protein
(c) Any two from:

1. (Monoclonal antibody) has a specific tertiary structure / variable region / is complementary to regulator protein

Do not award MP1 if reference to active site.
2. Binds to / forms complex with (regulator protein)
"It" refers to monoclonal antibody in MP1 and MP2
3. (So regulator protein) would not fit / bind to the receptor / is not complementary to receptor
3. Reject receptor on LDL
(d) 1. Injection with salt solution

1. Accept inject placebo in salt solution
2. Otherwise treated the same.

M18.(a) (i) 1. (Tumour suppressor) gene inactivated / not able to control / slow down cell division;

Ignore: references to Page $10^{\text {growth }}$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
2. Rate of cell division too fast / out of control.

1 and 2 Accept: mitosis
1 and 2 Reject: meiosis 2
(ii) 1. (Genetic) code degenerate;

Accept: codon for triplet
Accept description of degenerate code, e.g. another triplet codes for the same amino acid
2. Mutation in intron.

Accept: mutation in non-coding DNA $\mathbf{1}$ max
(b) 1. Antibody has specific tertiary structure / binding site / variable region; Do not accept explanations involving undefined antigen
2. Complementary (shape / fit) to receptor protein / GF / binds to receptor protein / to GF;

Ignore: same shape as receptor protein / GF
3. Prevents GF binding (to receptor).

M19.(a) Has more than one / four polypeptide chains / made up of polypeptide chains; $\mathbf{1}$
(b) 1. Antibody / variable region has specific amino acid sequence / primary structure;
2. The shape / tertiary structure of the binding site is complementary to / fits / binds with these antigens;
2. Do not accept active site for this point.
3. Forms complex between antigen and antibody;

M20.(a) 1. Infected by / susceptible to (other) pathogen(s) / named disease caused by a pathogen (from environment);

Context is where immune system cannot prevent or stop these events
Allow attack / kill
2. Pathogen(s) reproduce / cause diease (in host);

MPs not given in context of HIV
3. Damage cells / tissues / organs;
4. Release toxins;
(b) (i) 1. (HIV enters cells) before antibodies can bind to / destroy it;

Ignore SAFETY comments

1. and 2. Relate to antibodies
2. Antibodies cannot enter cells (to destroy HIV) / stay in blood;

OR
Page 11

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
3. (Enters cells) before (secondary) immune response caused / before memory cells have time to respond;
3. and 4. Relate to virus
4. So no antibodies present (to attack HIV);

OR

5. Vaccine taken up too quickly to cause immune response;
6. and 6. Relate to vaccine
7. So no antibodies / memory cells formed;

2 max
(ii) 1. Antigen (on HIV) changes;

Accept mutates
2. (Specific) antibody / receptor no longer binds to (new) antigen;

Ignore SAFETY comments
OR
3. Many different strains of HIV / many antigens present on HIV;
4. Not possible to make a vaccine for all antigens / vaccine may not stimulate an antibody for a particular antigen;
(c) 3 suitable suggestions;;;

QWC ignore reference to HIV cells
E.g.

1. Inactive virus may become active / viral transformation;
2. Attenuated virus might become harmful;
3. Non-pathogenic virus may mutate and harm cells;
4. Genetic information / protein (from HIV) may harm cells;
5. People (may) become / test HIV positive after vaccine used;

Vaccinated people may develop disease from a different strain to that in the vaccine
6. This may affect their work / life;

May continue high risk activities and develop or pass on HIV

M21. (a) molecule / part of molecule / protein / glycoprotein / named molecule; that stimulates an immune response / eq;
(b) divide by mitosis / form clones; produce plasma cells; (plasma cells) make antibodies;
(plasma cells) produce memory cells;

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
(c) (i) glycoprotein AND different shape to body proteins / RNA and reverse transcriptase inside virus / phospholipids same as body's / on the surface of the virus;
(ii) 187.5;; Accept 187-188 1 mark for $\mathrm{HIV}=80 \mathrm{~nm} ; \quad 2$ max [9]

M22. (a) divide by mitosis / form clones;
produce plasma cells;
(plasma cells) make antibodies;
(plasma cells) produce memory cells;
(b) glycoprotein;
different shape to body proteins / body phospholipids are the same /
located on the outside of the cell / the haemoglobin is located
inside the cell;

M23.(a) (To diagnose AIDS, need to look for / at)

1. (AIDS-related) symptoms;
2. Number of helper T cells.

Neutral: 'only detects HIV antibodies' as given in the question stem
b) 1. HIV antibody is not present;

Accept HIV antibodies will not bind (to antigen)
2. (So) second antibody / enzyme will not bind / is not present.
(c) 1. Children receive (HIV) antibodies from their mothers / maternal antibodies;
2. (So) solution will always turn blue / will always test positive (before 18 months).

Allow 1 mark for the suggestion that the child does not produce antibodies yet so test may be negative
(d) (Shows that)

1. Only the enzyme / nothing else is causing a colour change;
2. Washing is effective / all unbound antibody is washed away.

M24.(a) Any two from:

1. (Decrease linked to) few(er) cases of whooping cough;
2. (Decrease linked to) risk of / fear of side effects;
3. Insufficient vaccine available /
Page $13^{\text {too expensive to produce / }}$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
distribute.
3. Too expensive unqualified is insufficient for mark
(b) 1. Vaccination rate increases;
2. Fewer people to spread the disease / whooping cough / more people immune / fewer susceptible.
2. Neutral - greater herd effect
2. Allow description of immune

Q Reject 'resistant'.
(c) 1. More people are immune / fewer people carry the pathogen;

If neither point 1 or 2 awarded
Herd immunity = 1 mark
Unvaccinated does not mean infected

1. Q Do not accept disease for pathogen
2. So susceptible / unvaccinated people less likely to contact infected people.
