AQA, OCR, Edexcel

A Level

A Level Biology

Biological Molecules and Enzyme Answers

Name:

Mathsmadeeasy.co.uk

Total Marks:

M1.(a	a)	C.		1			
	(b)	E.		1			
	(c)	1.	compl	e site (of enzyme) has (specific) shape / tertiary structure / active site ementary to substrate / maltose; Reject active site on substrate.			
				Must have idea of shape Assume "it" = maltase			
				Accept (specific) 3D active site			
				Reject has same shape			
		2.		malt <u>o</u> se can bind / fit; Accept "substrate" for "malt <u>o</u> se"			
		3.	To for	m enzyme substrate complex.			
			,	Accept E-S complex	3	}	
						[5]	
M2.		(a)	Refere	nanges shape of antitrypsin; ence to hydrogen/ionic/disulfide bonds; iger attaches to/interacts/ reacts with trypsin;			
			,	Accept protease	2		
		/;;\	Llighor	the concentration of hydrogen percyide more emine saids/	-		
		(ii)	proteir	the concentration of hydrogen peroxide, more amino acids/ as affected;			
			More a	antitrypsin molecules change shape;	2		
	(b)	Sm	okers ha	mokers) inhale a lot of hydrogen peroxide; ve more active enzyme that damages lung tissue; as exchange surface;			
		1101	idoling ge		max	[6]	
M3.		(0)	(i) o	ondensation;		[0]	
IVIJ.		(a)	(i) C	oridensation,	1	-	
	(b)	(i)	D;		1		
		(ii)	C;		•	-	
		(11)	Ο,		1	-	
		(iii)	A;		1	-	
	(c)			e of a double bond;			
				ocarbon) chain; cept more <u>hydrogen</u> / saturated with hydrogen;			
					2 max	[6]	
						[-]	

M4. (a	1)	(i)	Joins nucleotides (to form new strand).		
`		.,	Accept: joins sugar and phosphate / forms sugar-phosphate backbone		
			Reject: (DNA polymerase) forms base pairs / hydrogen bonds	1	
		(ii)	(Prokaryotic DNA)		
			1. Circular / non-linear (DNA);		
			Accept converse for eukaryotic DNA Ignore: references to nucleus, binary fission, strands and plasmids		
			ignore. references to nucleus, binary lission, strands and plasinids		
			Not (associated) with proteins / histones;		
			Accept does not form chromosomes / chromatin		
			3. No introns / no non-coding DNA.		
			Accept only exons		
			Q Neutral: no 'junk' DNA		
				2 max	
	(b)	(i)	1. Have different genes;		
	` ,	()	Reject: different alleles		
			2 (Sabagas / tripleta) are in a different acquence / order		
			 (Sobases / triplets) are in a different sequence / order; Accept: base sequence that matters, not percentage 		
			 (So) different amino acid (sequence / coded for) / different protein / different polypeptide / different enzyme. 		
			Unqualified 'different amino acids' does not gain a mark		
			Reject: references to different amino acids formed		
			Ignore: references to mutations / exons / non-coding / introns2 max		
		/::\	(Virus DNA)		
		(ii)	(Virus DNA) 1. A does not equal T / G does not equal C;		
			Accept: similar for equal		
			Accept: virus has more C than G / has more A than T		
			 (So) no base pairing; (So) DNA is not double stranded / is single stranded. 2 max		
			5. (66) DIVITIS HOL GOUDIC STRANGED / 15 SINGLE STRANGED. 2 Max		[7
M5. (a	.\	1.	Maltose;		
IVIJ.(a	1)	2.	Salivary amylase breaks down starch. 2		
	<i>(</i> 1.)				
	(b)	Ma	ultase. 1		
	(c)	(Mi	imics / reproduces) effect of stomach.		
	, n				
	(d)	1. 2.	Add boiled saliva; Everything same as experiment but salivary amylase denatured. 2		
	(e)	1. 2.	Some starch already digested when chewing / in mouth; Faster digestion of chewed starch;		
		2. 3.	Same amount of digestion without chewing at end.		
			Accept use of values from Page 3graph 3		

[9]

M6. (a)	1.	Add io	dine / potassium iodide solution to the food sample; 1. Allow 'iodine'		
			2. Must be in the context of the correct reagent		
	2.	Blue	/ black / purple indicates starch is present;	2	
(b)	1.	Star	ch digested to maltose / by amylase; Ignore 'hard to digest / easily digested'		
	2.	Malt	ose digested to glucose / by maltase;		
	3.	Dige	estion of sucrose is a single step / only one enzyme / sucrase; 3. Accept converse for starch		
			3. Do not accept digestion of sucrose is faster	3	
(c)	1.	Smo	oking increases risk of CHD / introduces another variable;	1	
(d)	(i)	1.	No effect on risk with diet group 1 and 2 / lowest glycaemic load; Simple statement of correlation is not enough for this mark		
		2.	Above diet group 2 / in higher groups, risk increases as glycaemic load increases;	1 max	
	(ii)	1.	(Higher GL diets lead to) more (harmful) lipids (in blood), so greater risk of atheroma; Ignore reference to lipids in diet		
		2.	Atheroma leads to blockage of <u>coronary artery</u> / increased risk of blood clot in <u>coronary artery</u> ; Ignore references to myocardial infarction / heart attack	2	
					[9]
M7. (a)	1.		ner of amino acids;		
	2. 3.		ed by peptide bonds; ned by condensation;		
	4.		nary structure is order of amino acids;		
	5.		ondary structure is folding of polypeptide chain due to hydrogen bonding; Accept alpha helix / pleated sheet		
	6.	bond	·		
	7.	Qua	ternary structure is two or more polypeptide chains.	5 max	

Hydrolysis of peptide bonds; Endopeptidases break polypeptides into smaller peptide chains; Exopeptidases remove terminal amino acids;

Dipeptidases hydrolyse / break

Page 4^{down} dipeptides into amino acids.

(b)

1. 2. 3.

4.

```
4
M8.(a)
          Any two of the following:
             Concentration of enzyme
             Volume of substrate solution
            pH.
                         Allow same concentration of substrate
                                                                                                                1
      b)
            Ratio between 5.18:1 and 5.2:1
            Initial rates incorrect but correctly used = 1 mark.
                         Allow 1 mark if rate at:
                          60^{\circ}\text{C} = 0.83 \text{g dm}^{-3} \text{ s}^{-1} / 49.8 \text{g dm}^{-3} \text{ minute}^{-1}
                          OR
                         37^{\circ}\text{C} = 0.16 \text{g dm}^{-3} \text{ s}^{-1} / 9.6 \text{g dm}^{-3} \text{ minute}^{-1}
                                                                                                                2
            At 60 °C:
      (c)
             1.
                   More kinetic energy;
            2.
                   More E-S complexes formed.
                          Allow converse for 37 °C
                                                                                  2
      (d)
             Different times:
                   Higher temperature / 60 °C causes denaturation of all of enzyme;
                         Accept converse for 37 °C
            2.
                   Reaction stops (sooner) because shape of active site changed;
                          Reject if active site on substrate
            Different concentrations of product (at 60 °C)
                   Substrate still available (when enzyme denatured);
                   But not converted to product.
            4.
                                                                                                  [9]
M9.(a)
          1.
                 Starch formed from \alpha-glucose but cellulose formed from \beta-glucose;
            2.
                   Position of hydrogen and hydroxyl groups on carbon atom 1 inverted. 2
      (b)
             1.
                   Insoluble:
             2.
                   Don't affect water potential;
             OR
             3.
                   Helical:
                          Accept form spirals
            4.
                   Compact;
             OR
                   Large molecule;
            5.
                   Cannot leave cell.
            6.
                                                                                  2
            1.
      c)
                  Long and straight chains;
                   Become linked together by many hydrogen bonds to form fibrils;
            2.
            3.
                   Provide strength (to cell wall).
                                                                                                                    [7]
M10.
                   (i)
            (a)
                         fructose;
                                                                          1
            (ii)
                   correctly drawn (OH group at bottom left);
                                                                          1
      (b)
            hydrolysis;
                                                                                                 1
                                                        Page 5
```

	(c)	(i)		with Benedict's solution		•	ainitata.			
		(ii)		ge / brown / brick red / g et test / NaOH + CuSO₄;	reen / yello	w colour or pre	cipitate; 2			
		(11)		et test / NaOT + CuSO4, ele / violet / lilac / mauve;		2				[7]
M11.		(a)	(i) Lilac	Biuret / alkali + copper c / purple / mauve / violet Do not give credit for b	i;	Ignore referenc	ces to heating	<u>.</u>	2	
	(b)	R gr	oup o	f phenylalanine copied a	ccurately;			1		
	(c)	(i)		d shown linking carbon a and H removed, =O and				2		
		(ii)	Pept	ide bond;				1		
	(d)	Addi	ition o	f hydroxyl / OH group; Candidate must disting hydrolysis	guish clearly	/ between hydro	oxylation and			
				,					1	[7]
M12.				on shows there is overla wild salmon so may not	•		lation;			[2]
M13.	(a)	1.	Crush	n / grind;						
		2.	With	ethanol / alcohol;						
		3.	Ther	n add water / then add to 2. Water must be adde	,	anol for third ma	nrk.			
		4.	Form	ns emulsion / goes white 4. Do not accept carry	•	on test.	3			
	(b)	(i)	4 / fc	our;				1		
		(ii)	1.	Phosphate / PO4; "It" refers to phospholip	oid.					
			2.	Instead of one of the fa 1. Accept minor errors phosphorus group.	•	-		2		
		(iii)	1.	Double bonds (present (double bonds) betwee Answer refers to unsat May be shown in appro	en carbon a turated unle	toms / not satur ess <i>otherwi</i> se <i>cl</i>	ated with hydi	rogen;		
			2.	In (fatty acid) C / 3;	2		[8]			
M14.		(a)	1.	Add Benedict's;	Page	6				

				Hydrolyse with acid negates mp1		
		2.	Heat;			
				Accept warm, but not an unqualified reference to water bath		
		3.	Red /	/ orange / yellow / green (shows reducing sugar present); Accept brown	3	
	(b)	(i)	1.	Starch hydrolysed / broken down / glucose / maltose produced; Neutral: Sugar produced		
			2.	Lower water potential;		
			3.	Water enters by osmosis; 3		
		(ii)	Only	2 pHs studied / more pHs need to be tested; Accept: different amylase may have a different optimum pH	1	[7]
M15.	(a)	Increa	ase in	the first 3 – 4 hours and then decrease;	1	
	(b)	Little	/ no c	difference (at 8 hours);		
		Betw	/een a	all groups; 2		
	(c)	Resp	oiration	n (produce CO ₂);		
		Ву с	ells / ti	issues; 2		
	(d)	Clea	r diffei	rences between the lactose deficient and IBS / control group;		
		No o	verlap	o in SD;		
				Accept between all groups 2 [7]		
	M 10	6. (a)	Ami	ino acid / amino acids ; If anything else is given as well do not award mark. 1		
	(b)	(i)	1.	Affects one monomer / amino acid; i.e. What is affected		
			2.	Not found in all <u>active sites;</u> i.e. Where it is found. 2. Must relate to active site. Enzyme is insufficient. 2		
		(ii)	1.	X ;		
			2.	Enzyme in both pathways; 2. Award independently 2		
	(c)	1.	Occu	upies / blocks / binds to Page 7 ^{active} site;		

i.e. What it does in terms of the active site.

- 2. Substrate will not fit / does not bind / no longer complementary to / enzymesubstrate complex not formed;
 - 1. Ignore references to change in shape and shape of aspirin molecule.

Ignore reference to competitive inhibitor i.e. Consequence required 2 [7]

M17.(a) 1. Inhibition;

Accept either competitive or non-competitive inhibition or a description of either.

- 2. Changes tertiary structure (of enzyme);
- 3. Changes shape of / blocks active site (of enzyme);

The active site must be in the context of the enzyme / cytochrome oxidase.

4. Enzyme cannot bind to its substrate / no enzyme-substrate complex formed.

Accept 'ES'. Accept 'substrate cannot attach to enzyme'.

3 max

(b) (Antidote reacts with / binds to cyanide) so cyanide cannot bind to enzyme / cytochrome oxidase

OR

(Antidote reacts with / binds to cyanide) so causing cyanide to be released from the enzyme / cytochrome oxidase.

Key idea is how the antidote affects the cyanide.

1

- c) (i) 1. $\mathbf{A} + \mathbf{C} + \mathbf{E} / \text{all liver (trials)}$
 - 2. $\mathbf{B} + \mathbf{D} + \mathbf{F}$ / all kidney (trials)
 - 3. **D** + **E** / all rat (trials);;

Accept a description of any trial letter.

All 3 groups correct = 2 marks.

Any 2 groups correct = 1 mark.

1 group / no groups correct = 0 mark.

2 max

(ii) 1. Cyanide reduces oxygen use / rate of respiration in **A** and **B** / in both

OR

as concentration of cyanide increases, the use of oxygen decreases in both:

Accept use of letters or description of the animal **and** organ Reference to 'both', in some way, is required.

Greater effect of cyanide (on oxygen use) on sheep kidney / B than on sheep liver / A;

Comparison required in the statement. The statement should not be inferred from MP3.

 Appropriate calculations of mean oxygen use from the data E.g. 1 liver falls by 74% whereas kidney falls by 87% OR

liver falls to 0.26 / to 26% whereas kidney falls to 0.13 / to 13% E.g. 2 liver falls by 2.0(au) whereas kidney falls by 12.2(au);

Check correct calculations using the data but a comparison must be shown. Accept other calculations using the data.

(iii) 81(%);

Correct answer = 2 marks.

Allow 1 mark for either:

Showing 8.1 divided by 10 or answer of 19(%).

Ignore '+' or '-' in showing the difference.

[11]

3

M18.(a) (i) Repeating units / nucleotides / monomer / molecules;

Allow more than one, but reject two 1

- (ii) 1. C = hydrogen bonds;
 - 2. $D = \underline{\text{deoxy}}$ ribose; Ignore sugar
 - 3. E = phosphate;

Ignore phosphorus, Ignore molecule

3

2

(iii)

Name of base	Percentage
Thymine	34
Cytosine / Guanine	16
Adenine	34
Cytosine / Guanine	16

Spelling must be correct to gain MP1

First mark = names correct

Second mark = % correct, with <u>adenine as 34%</u>

(b) (i) 153;

2

1

(ii) Some regions of the gene are non-coding / <u>introns</u> / start / stop code / triplet / there are two DNA strands:

Allow addition mutation

Ignore unqualified reference to mutation

Accept reference to introns and exons if given together

Ignore 'junk' DNA / multiple repeats

Page 9

				[8]
M19. (a)	1.	Cell wall not formed / production inhibited; 1. Q Accept: weakened cell wall, but do not accept 'cell wall is broken down'		
	2.	Lower <u>water potential</u> in bacterium; 2. Accept: converse 2. Must be clear that the lower water potential is in the bacterium		
	3.	Water enters and causes lysis / expansion / pressure;	2 max	
(b)		man cells lack enzyme (B) / have a different enzyme / produce different fatty ds / use different substrates; Neutral: 'human cells do not have cell walls' as out of context	1	
(c)	1.	Change in base sequence (of DNA / gene) leading to change in amino acid sequence / primary structure (of enzyme); 1. Accept: different amino acids coded for 1. Reject: different amino acids produced		
	2.	Change in hydrogen / ionic / disulphide bonds leading to change in the tertiary structure / active site (of enzyme); 2. Neutral: alters 3D structure / 3D shape		
	3.	Substrate not complementary / cannot bind (to enzyme / active site) / no enzyme-substrate complexes form;	3	[6]
M20. (a)	Deo	xyribose. 1		
(b)	1. 2.	Thymine 18 (%); Guanine 32 (%).		
(c)	DNA	A polymerase. 1		
(d)	1. 2. 3. 4.	(Figure 1 shows) DNA has antiparallel strands / described; (Figure 1 shows) shape of the nucleotides is different / nucleotides aligned differently; Enzymes have active sites with specific shape; Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.	4	
M21. (a)	1.	Separates / unwinds / unzips strands / helix / breaks H-bonds; Page 10		[8]

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1. Q Neutral: strands / helix split

1. Accept: unzips bases

2. (So) <u>nucleotides</u> can attach / are attracted / strands can act as templates;

2. Q Neutral: bases can attach

2. Neutral: helix can act as a template

(b)

Sample	Type(s) of DNA molecule present in each tube				
	¹⁵ N/ ¹⁵ N	¹⁵ N/ ¹⁴ N	¹⁴ N/ ¹⁴ N		
1	✓				
2		✓			
3		✓	✓		

One mark for each correct row

3

2

- (c) (i) 1. Similar shape / structure (to cytosine) / added instead of cytosine / binds to guanine;
 - 1. Accept: idea that only one group is different
 - 1. Reject: same shape
 - Prevents (complementary) base pairing / prevents H-bonds forming / prevents formation of new strand / prevents strand elongation / inhibits / binds to (DNA) polymerase;
 - 2. Accept: prevents cytosine binding

Neutral: 'prevents DNA replication ₹ as given in the question stem

Neutral: 'competitive inhibitor ₹ unqualified

Neutral: inhibits DNA helicase

2

1

(ii) (Cancer cells / DNA) divide / replicate fast(er) / uncontrollably;

Accept: converse argument for healthy cells

[8]