A-level

Physics

PHYA5/1 - Nuclear and Thermal Physics
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]| Question | Answers | Additional Comments/Guidance | Mark | ID details |
| :---: | :---: | :---: | :---: | :---: |
| 1(a)(i) | $\begin{aligned} & \text { momentum }(=E / c) \\ & =5.94 \times 10^{-11} / 3.00 \times 10^{8}=2.0 \times 10^{-19}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \left(=1.98 \times 10^{-19} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \text { Or evidence of use of } E=h c / \lambda V \\ & \lambda=\left(h / \mathrm{mv}=6.63 \times 10^{-34} / 1.98 \times 10^{-19}\right)=3.35 \times 10^{-15}(\mathrm{~m}) \vee \\ & \text { (allowable range } \left.3.32 \times 10^{-15}-3.37 \times 10^{-15} \mathrm{~m}\right) \end{aligned}$ | $3.348 \times 10^{-15} \mathrm{~m}$ alone may score 1 mark
 A completed calculation to at least 3 sf must be seen for $2^{\text {nd }}$ mark | 2 | |
| 1(a)(ii) | nuclear radius $=0.61 \lambda / \sin \theta=0.61 \times 3.35 \times 10^{-15} / \sin 42^{\circ}$ $=3.1 \times 10^{-15}(\mathrm{~m}) \downarrow$ (allow $2.95-3.1 \times 10^{-15} \mathrm{~m}$ which is a range incorporating $3.32 \times 10^{-15}-3.37 \times 10^{-15} \mathrm{~m}$ and $42^{\circ}-43^{\circ}$) | (The answer must be to 2 sf or better note $3.3 \times 10^{-15}, 42^{0}$ gives $3.008 \times 10^{-15} \mathrm{~m}$ i.e. 3.0×10^{-15}) | 1 | |
| 1(b)(i) | diagram to show a labelled α source, foil target and detector (which is not simply a forward facing screen so there must be some indication it can move around the target e.g. a curved arrow/positioned at an angle/or screen curved round target or detectors shown in at least two positions) $\sqrt{ }$
 with evacuated vessel or an item to collimate the beam $\sqrt{ }$ (the evacuated vessel does not have to be drawn so a simple label of 'in a vacuum' will gain the mark.)
 (A tube or a plate(s) must be drawn with a collimator label or a label on an emergent alpha beam from the drawn item (which is distinct from the source) will gain a mark) | 'detector' has alternatives e.g. fluorescent screen/scintillator/zinc sulphide | 2 | |

	3. α particles can be backscattered or scattered by more than 90° 4. which suggests I. they have collided with something more massive than themselves (using momentum considerations) II. they have been repelled by a concentrated positive charge (using coulomb repulsion) these together suggest a 'solar system' configuration for the atom. 5. Consider the proportion of α 's passing straight through the foil, i.e. how much of the straight through beam is stopped by the foil. Or Appreciate that scattering of α 's close to 180° takes place which means the α 's have not touched the nuclear surface. 6. First alternative data can be related to how much of the beam is intercepted by nuclei. Using the number of atomic layers/thickness of foil and the nuclear cross-sectional area the upper limit to the radius may be found Or If second alternative is used some detail is needed to gain this point. Either a discussion of the loss KE = gain PE to find upper limit to the radius Or the idea that backscattering is not observed/falls off if the alpha comes close the nucleus because the strong nuclear force (SNF) takes over and so provides an upper limit to the radius. (owtte)	are expected to be given as detailed on the left. This check list gives a brief idea of the main parts expected. (note the pairing of 1and 2,3 and 4,5 and 6 where the second of each pair cannot be given in isolation but the first of each pair does not have to perfect) If it is obvious the candidate is talking about an alpha particle but calls it something different do not over penalise. E.g. miss out a pairing of marks then mark as if alpha) Quick check list. 1. Most alpha's go straight on 2. Because an atom has mainly empty space 3. A few alpha's are backscattered 4. Because of nuclear positive charge or large nuclear mass 5. Method suggested to find R (drop in straight on beam Or backscattering means α 's have not touched nucleus) 6. Some detail such as ref. to (nuclear) area and (foil) thickness Or alpha KE to PE giving r Or if α 's touch surface SNF stops scattering.		
Total			11	

Question	Answers	Additional Comments/Guidance	Mark	D details
2(a)	nuclear fallout/testing/weopons / nuclear accidents / Chernobyl / nuclear waste/ nuclear medicine / X-rays / specific uses of radioactive sources eg medical tracers CT scan etc. / cosmic rays as a result of air travel $\sqrt{ }$ (Any source of radiation that an individual may encounter which would not have existed 100 years ago)	No mark for general answers such as 'medical' or Nuclear Power/nuclear plant. If a list is given all must be correct but ignore generalisations such a medical or nuclear power.	1	
2(b)(i)	$I_{15 \mathrm{CCR}}=2050-40=2010 \mathrm{~V}$ Use of inverse square law eg $I_{\text {CCR90 }}=I_{\mathrm{CCR} 15}\left(\frac{d_{15}}{d_{90}}\right)^{2} \sqrt{ }$ $\begin{aligned} & =2010 \times(0.15 / 0.90)^{2}=55.8 \\ & I_{g 0 C R}=55.8+40 \\ & I_{90 C R}=96 \text { counts } \text { min }^{-1} \sqrt{ } \end{aligned}$	regardless of order: $1^{\text {st }}$ mark subtraction of background in original data $2^{\text {nd }}$ mark is for using inverse square function $3^{\text {rd }}$ mark is for the answer	3	
2(b)(ii)	(reduce impact of) random error /decrease the (percentage) uncertainty / improve the statistics (because the percentage error is proportional to the inverse square-root of the count) $\sqrt{ }$ (owtte)	The answer must be an uncertainty related statement and not increases reliability/accuracy or increased chance of a reading (although these ideas can accompany a correct answer) Ignore comparisons with the background count.	1	
2(b)(iii)	use (sensible) absorber between source and detector $\sqrt{ }$ (sensible absorber means it must have a noticeable effect e.g. 1 mm of metal/ aluminium sheet/ 5 mm perspex but do not allow metal foil / paper sheets. Also its effect must not be so great that it reduces the gamma rays noticeably) (These two marks are independent) β shown by count rate falling when sheet of aluminium	$2^{\text {nd }}$ mark no mark given if count rate falls to zero as γ is still present (magnetic deflection is not common but if seen. Use of magnetic deflection $\sqrt{ }$ correct deflection of beta from the beam $\sqrt{ }$) (If a cloud chamber is suggested. Observe the	2	

	absorber is used $\sqrt{ }$ Or (using the existing apparatus) Compare the results (at various distances) in air with the expected inverse square law $\sqrt{ }$ Below the range of beta law does not work but above range it does. $\sqrt{ }$	tracks in a cloud chamber $\sqrt{ }$ beta tracks have varying lengths or they are curly/not straight $\sqrt{ }$	(The value of the range of beta is not a marking point so accept $15-80 \mathrm{~cm}$ if a number is given)
Total			7

Question	Answers	Additional Comments/Guidance	Mark	ID details
3(a)(i)	Fission occurs at A values above the peak / above A of about 56 and fusion occurs at A values below the peak / below A of about $56 \sqrt{ }$ Fission is the splitting of a nucleus (into two smaller ones) and fusion is the joining of two nuclei $\sqrt{ }$	First mark uses the graph so 'fission occurs in very large nuclei' does not gain a mark. (allow other interpretations that use the graph eg gradients) $2^{\text {nd }}$ Mark splitting into 2 is not required for fission but if the answer implies something different like the separating of all the nucleons the mark may not be given.	2	
3(a)(ii)	Energy is released when the binding energy (per nucleon) is increased $\sqrt{ }$ fusion energy is greater as the increase in $B E(I A)$ for fusion > increase in $B E(/ A)$ for fission (owtte) $\sqrt{ }$	The last point can be given for a reference to the larger gradient at small values of A (fusion region) compared to the gradient at large values of A (fission region)	2	
3(b)(i)	$\Delta m=\left(8 m_{\mathrm{p}}+8 m_{\mathrm{n}}\right)-\mathrm{M}_{\text {oxygen }}$ mark for substituting data into the above equation in any workable consistent units $\begin{aligned} & =8(1.00867+1.00728)-15.991 \vee \\ & (\Delta m=0.1366 \mathrm{u} \\ & \left.\Delta m=0.1366 \times 1.661 \times 10^{-27}\right)=2.3 \times 10^{-28}(\mathrm{~kg}) \vee \\ & \left(\text { range of answers } 2.2-2.3 \times 10^{-28} \mathrm{~kg}\right. \text {) } \end{aligned}$	Substitution may take the following form $\begin{aligned} & 8\left(1.673 \times 10^{-27}\right)+8\left(1.675 \times 10^{-27}\right)-(15.991 \times \\ & \left.1.661 \times 10^{-27}\right) \sqrt{ } \\ & =2.23 \times 10^{-28}(\mathrm{~kg}) \downarrow \end{aligned}$ Correct answer gains full marks. Look out for a physics error in which u is not taken as $1.661 \times 10^{-27} \mathrm{~kg}$	2	
3(b)(ii)	$\begin{aligned} & E=m \times c^{2}=2.3 \times 10^{-28} \times\left(3.00 \times 10^{8}\right)^{2}=2.07 \times 10^{-11} \mathrm{~J} \\ & \mathrm{BE}=2.07 \times 10^{-11} / 1.6 \times 10^{-13}=130(\mathrm{MeV}) V(129 \mathrm{MeV}) \\ & \text { Or using } \\ & \text { using } \Delta m=0.1366 \mathrm{u} \text { (this must appear in b(i) for this } \\ & \text { approach) } \\ & \text { BE }=0.1366 \times 931.3=130(\mathrm{MeV}) \vee(127 \mathrm{MeV}) \end{aligned}$	CE is allowed but only if the calculation is shown Note answer $=b(i) \times 5.625 \times 10^{29}$ answer only is acceptable for one mark. (factor may be 931 or 931.5)	1	

3(b)(iii)	read from the graph the BE/A for $\left({ }_{8}^{16} \mathrm{O}\right)$ and multiply by the number of nucleons(or 16) $\sqrt{ }$ Or show the calculation $\mathrm{BE}=8(\mathrm{Mev}) \times 16(\text { nucleons })=130(\mathrm{MeV}) \vee(128 \mathrm{MeV}) \sqrt{ }$	There must be a reference to $\left({ }_{8}^{16} \mathrm{O}\right)$ position on the graph. with the calculation allow $\mathrm{BE}=8.1(\mathrm{Mev}) \times$ 16 (nucleons) = 130 (MeV) A calculation may lead to an answer in joule	1
Total			8

Question	Answers	Additional Comments/Guidance	Mark	ID details
4(a)	1. fixed mass or fixed number of molecules/moles $\sqrt{ }$ 2. constant temperature $\sqrt{ }$	Allow alternatives to fixed mass such as 'sealed vessel' or 'closed system'. Not amount of gas as this is ambiguous. The temperature must not be specific.	2	
4(b)(i)	$\begin{aligned} & \left(V_{2}=\frac{P_{1}}{P_{2}} \times V_{1} \times \frac{T_{2}}{T_{1}}\right) \\ & V_{2}=\frac{1.0 \times 10^{5}}{4.4 \times 10^{5}} \times 0.0016 \times \frac{350}{290} \end{aligned}$ or $\left(V=\frac{n R T}{P}\right)$ $\begin{aligned} & V=0.067 \times 8.31 \times 350 /\left(4.4 \times 10^{-4}\right) V \\ & =0.00044\left(\mathrm{~m}^{3}\right) \vee\left(4.39 \times 10^{-4} \mathrm{~m}^{3}\right) \end{aligned}$	$1^{\text {st }}$ mark comes from use of valid equation with substitutions. In the alternative look out for $0.067=1 / 15=$ ($0.0016 / 0.024$) And $R=N_{\mathrm{A}} k$ Correct answer gains full marks If no other answer is seen then 1 sig fig is wrong.	2	
4(b)(ii)	(proportion of a mole of trapped air = volume of cylinder / volume of mole) $=0.0016 / 0.024=0.067(\mathrm{~mol}) \sqrt{ }(0.0667)$ or (use of $n=p V / R T$) $=1.0 \times 10^{5} \times 0.0016 /(8.31 \times 290)=0.066(\mathrm{~mol}) \vee(0.0664)$ or $=4.4 \times 10^{5} \times 0.00044 /(8.31 \times 350)=0.067(\mathrm{~mol}) \vee(0.0666)$	Answers range between $0.066-0.067 \mathrm{~mol}$ depending on the volume carried forward. (answer alone gains mark) Working must be shown for a CE Ans $=V_{2} \times 151$	1	
4(b)(iii)	$\begin{aligned} & (\text { mass }=\text { molar mass } \times \text { number of moles }) \\ & \text { mass }=0.029 \times 0.0667 \sqrt{ }(0.00193 \mathrm{~kg}) \\ & (\text { density }=\text { mass } / \text { volume }) \\ & \text { density }=0.00193 / 0.0016=1.2(1) \mathrm{kg} \mathrm{~m}^{-3} \sqrt{ } \end{aligned}$ (no continuation errors within this question but allow simple powers of 10 arithmetic errors which will lose one mark)	$\begin{aligned} & \text { CE mass }=0.029 \times(\mathrm{b})(\mathrm{ii}) \\ & C E \text { density }=(0.029 \times(\mathrm{b})(\mathrm{ii})) / 0.0016 \\ & \text { or }(18.1 \times(\mathrm{b})(\mathrm{ii}) \end{aligned}$	2	
4(c)	the (average/mean/mean-square) speed of molecules		2	

	increases (with absolute temperature) $\sqrt{ }$ as the mean kinetic energy is proportional to the (absolute) temperature Or Reference to $\mathrm{KE}_{\text {mean }}=3 / 2 k T \quad \sqrt{ }$ but mean or rms must feature in the answer somewhere.		
Total			9

Question	Answers	Additional Comments/Guidance	Mark	$\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$
5(a)	Tick in $4^{\text {th }}$ box		1	
5(b)(i)	(using heat energy $=m \mathrm{l}$) energy $=0.047 \times 3.3 \times 10^{5}=1.6 \times 10^{4}(\mathrm{~J}) \sqrt{ }\left(1.55 \times 10^{4} \mathrm{~J}\right)$	answer alone gains mark	1	
5(b)(ii)	(heat in from water $=$ heat supplied to melt and raise ice temperature) $1.8 \times 10^{4}=1.6 \times 10^{4}+$ (energy to raise temp of ice) energy to raise temp of ice $=2 \times 10^{3}(\mathrm{~J}) \sqrt{ }$	answer alone gains mark allow 2, 2.5 or $3 \times$ $10^{3} \mathrm{~J}$ allow CE if substitution is shown $1.8 \times 10^{4}-(\mathrm{b})(\mathrm{i})$	1	
5(b)(iii)	(using heat energy $=m c \Delta T$) $c=2 \times 10^{3} / 0.047 \times 25$ $=2 \times 10^{3} \sqrt{ }\left(1.7 \times 10^{3}\right)$ (note there is a large range of correct answers) $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$ or $\mathrm{J} \mathrm{kg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \sqrt{ }$ (allow use of dividing line but don't allow ${ }^{\circ} \mathrm{K}$ and ${ }^{\circ} \mathrm{C}^{-1}$ is not the same as C^{-1})	only allow CE if substitutions are seen $\begin{aligned} & c=(\mathrm{b})(\mathrm{ii)} / 0.047 \times 25 \\ & =\mathrm{b}(\mathrm{ii)} \times 0.851 \end{aligned}$ allow 1 sig fig. common answers: for $2.5 \times 10^{3} \mathrm{~J}$ gives 2.1×10^{3} or 2×10^{3} for $3 \times 10^{3} \mathrm{~J}$ gives 2.6×10^{3} or 3×10^{3}	2	
Total			5	

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

