AQA

A Level

A Level Maths

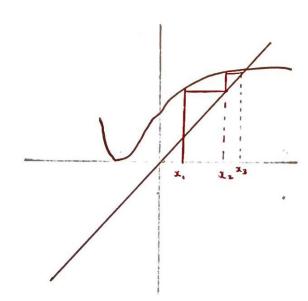
AQA Core Maths C3 June 2013 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

AQA June 13 C3 |2x-3| = |x| $2x-3 \cdot x$ $x \cdot 3$ or 2x-3 = -x x . 1 1b. $x \le 1$, $x \ge 3$ Since y = 12x - 31 is above y = |x| when $x \le 1$ and $x \ge 3$ 2a. $y = x^4 \tan 2x$ $x^4 \rightarrow hx^3$ $\tan 2x \rightarrow 2xe^2 2x$ 26. $\frac{dy}{dx} = \frac{2x(x-1) - x^2(1)}{(x-1)^2}$ when x = 3, $\frac{dy}{dx} = \frac{2(3)(3-1)-(3)^2}{(3-1)^2}$ $e^{-x} - 2 + \sqrt{x} = 0$ f(3) = 0.218162... f(4) = 0.0183156... change of sign 3 < 0 < 4


36.

x, : 3.5

x3 = 3.880

x3 = 3.918

3.

4.

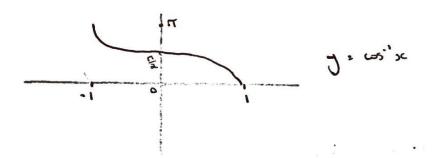
0 4 x 4 2 11

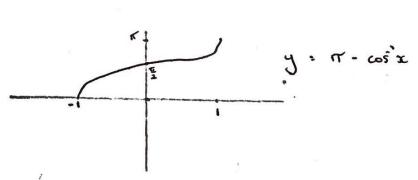
use
$$\tan^2 x = \sec^2 x - 1$$

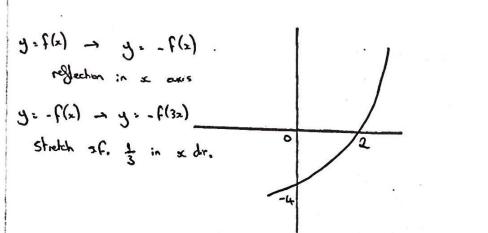
 $\sec^2 x = \tan^2 x + 1$

:.

0


s


Smaller since rectangles are mostly below the cure


56.

60.

6.

Maths Made Easy © Complete Tuition Ltd 2017

31:

9.

$$\frac{\pi}{16} \left[\frac{1}{3} y^{3} - 8y^{4} + 96y \right]_{0}^{16}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left\{ \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right) \right\}$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} + 96(16) - 0 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} - 8(16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 8(16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 1 \right)$$

$$\frac{\pi}{16} \left(\frac{1}{3} (16)^{2} - 1 \right)$$

$$\frac$$

 $x \ln^2 x - 2x \ln x + 2x$

 $\label{thm:limit} \mbox{ Visit $\underline{\mbox{http://www.mathsmadeeasy.co.uk/}}$ for more fantastic resources. }$

106.	$\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx$
	$\int_{1}^{2} \frac{2u}{u^{2}+u} du$
	$2\int_{1}^{2}\frac{1}{u+1}du$
	= 2[en u+1]?
	2 ln3 - 2ln2
	$2 \ln \left(\frac{3}{2}\right)$

u	2	x 1/2	
20	2	uz	
do	(:	24	du
x	4	1	
u	2	1	