AQA

A Level

A Level Maths

AQA Core Maths C3 June 2011 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

26.

$$y = \frac{25n3x}{1+\cos 3x}$$
 Ouchiert: $f: 25i3x = 9: 1+\cos 3x$

$$f': 6\cos 3x = 9': -3\sin 3x$$

$$\frac{dy}{dx} = \frac{6\cos 3x (1+\cos 3x) - 2\sin 3x (-3\sin 3x)}{(1+\cos 3x)^{2}}$$

$$= \frac{6\cos 3x + 6\cos^{2} 3x + 6\sin^{2} 3x}{(1+\cos 3x)^{2}}$$

$$= \frac{6\cos 3x + 6(\cos^{2} 3x + \sin^{2} 3x)}{(1+\cos 3x)^{2}}$$

$$= \frac{6(\cos 3x + 1)}{(1+\cos 3x)^{2}}$$

$$= \frac{6(\cos 3x + 1)}{(1+\cos 3x)^{2}}$$

$$= \frac{6(\cos 3x + 1)}{(1+\cos 3x)^{2}}$$

 $\left(\cos^2 3x + \sin^2 3x = 1\right)$

3.

$$y = \cos^{2}(2x-1)$$
, $y = e^{x}$
intersect when $\cos^{2}(2x-1) = e^{x}$
let $f(x) = \cos^{2}(2x-1) - e^{x}$
 $f(o\cdot u) = 0.2803...$
 $f(o.5) = 0.0779...$
change of sign => 0.4 < 0 < 0.5
 $\cos^{2}(2x-1) = e^{x}$
 $2x-1 = e^{x}$
 $2x = 1 + \cos(e^{x})$

36.

 $x : \frac{1}{2} + \frac{1}{2} \cos(e^x)$

$$x_{n+1} = \frac{1}{2} + \frac{1}{2} \cos(e^{x_n})$$

 $x_1 = 0.4$
 $x_2 = 0.539$
 $x_3 = 0.428$ (34.p.)

Lai.

S A

0 : 345.5° , 194.5°

x = 157.8°

Lai

$$2 \cot^{2}(2x+30^{\circ}) = 2 - 7 \csc(2x+30^{\circ})$$

$$\cot^{2}0 = \csc^{2}0 - 1$$

$$2(\cos^{2}(2x+30) - 1) = 2 - 7 \csc(2x+30)$$

$$2 \cos^{2}(2x+30) + 7 \csc(2x+30) - 4 = 0$$

$$(2 \csc^{2}(2x+30) - 1)(\csc(2x+30) + 4) = 0$$

$$\cos^{2}(2x+30) = \frac{1}{2} \qquad \text{or} \qquad \cos^{2}(2x+30) = 0$$

$$\sin(2x+30) = 2 \times \sin(2x+30) = -1/4$$

$$\sin(2x+30) = -1 \le \sin 0 \le 1 \quad \forall 0 \in \mathbb{R}$$

: 345.5° =7

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

4. by:
$$\cos c \times \rightarrow y$$
: $\csc (2x + 30)$

9: $\csc \times \rightarrow y$: $\csc (2x)$ shrith s.f. $\frac{1}{2}$ in \times direction

9: $\csc (2x) \rightarrow y$: $\csc (2(x+15))$ branchetion (-15)

5a. $f(x) = x^2$, $\forall x \in IR$
 $g(x) = \frac{1}{2x+1}$, $x \neq -1/2$

F(x) is not $1-1 = 7$ no inverse

5b. let $g : \frac{1}{2x+1}$
 $2yx + y = 1$
 $2yx = 1-y$
 $x = \frac{1-y}{2x}$

5c. $\cos g = \frac{1}{2}$
 $\sin g = \frac{1-x}{2}$

5c. $\cos g = \frac{1}{2}$
 $\sin g = \frac{1-x}{2}$

5d. $\cos g = \frac{1}{2}$
 $\sin g = \frac{1-x}{2}$
 $\sin g = \frac{1$

6a.

x : e 43

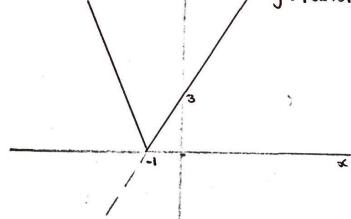
66.

$$3 \ln x + \frac{20}{\ln x} = 19 \quad (x \ln x)$$

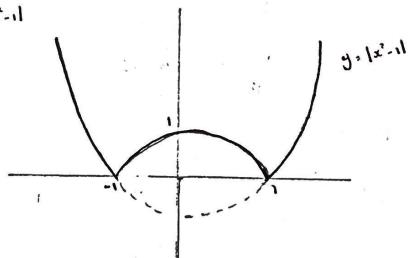
3 lnx = 4

ln x = 5

Tai.



Tai.



$$3x+3 : -(x^2-1)$$

$$3x + 3 : 1 - x^2$$

$$\frac{7h_{i}}{x+3} < \frac{1}{x^2-1}$$

· ×: -2, -1, 4

4 intervals to check:

6 6 8

8.

$$\int \frac{1}{\left(1+2\tan x\right)^2\cos^2x} dx$$

$$\int \frac{1}{u^2 \cos^2 x} \cdot \frac{1}{2} \cos^2 x \, du$$

$$\frac{du}{2sec^2x} : \frac{1}{2}\cos^2x du$$

$$=\frac{1}{2} \cdot -u^{-1} + c$$

$$=\frac{1}{2u}+c$$

Parts u:lnx

$$\frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \frac{1}{2}x^2 dx$$

$$\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x \, dx$$

$$\frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2} + c$$
 $y: (\ln x)^{2}$

$$\frac{dy}{dx} \cdot 2 \cdot \frac{1}{x} (\ln x)$$

9.

$$V = \pi \int_{1}^{e} y^{2} dx$$

$$V = \pi \int_{1}^{e} x (\ln x)^{2} dx$$

$$V = \frac{1}{2} x^{2} (\ln x)^{2}$$

$$V = \frac{1}{2} x^{2} (\ln x)^{$$