AQA

A Level

A Level Maths

AQA Core Maths C2 June 2011 Model Solutions

Name:

Mathsmadeeasy.co.uk

Total Marks:

10. Sine Rule:
$$\frac{\sin 0}{10} = \frac{\sin 5u}{q}$$

0 : $\frac{\sin (\frac{10 \sin 5u}{q})}{\frac{9}{2}}$

16. Ollest...

16. (6. nearest dagree)

16. Area : $\frac{1}{2}ab\sin C$

C : $180 - 5u - 6u \cdot 01u$

16. $187 \cdot 0$

2a. A : $\frac{1}{3}r^{2}0$

2b. $187 \cdot 0$

2b. $187 \cdot 0$

2c. $187 \cdot 0$

2d. $187 \cdot 0$

2d

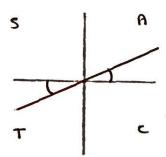
Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

b.
$$\int \frac{(2+x^2)^3}{x^4} dx \cdot \int \frac{8+12x^2+6x^4+x^6}{x^4} dx$$

$$= \int 8x^4+12x^2+6+x^6 dx$$

$$= \int \frac{(2+x^2)^3}{x^4} dx \cdot \left[-\frac{8}{3}x^{-3}-12x^{-1}+6x+\frac{1}{3}x^{-3} + \frac{1}{3}x^{-1} + \frac{1}{3}x^{-1}$$

Lex.	(4-5)(4+1) 20
	4: <
	2^{x} . 5 or $2^{x} + 1 = 0$ $\log 2^{x}$. $\log 2$ $2^{x} - 1 \times 2^{x}$ $2^{x} - 1 \times 2^{x}$
	log 2x .155 2x1 x
	x log 2 = log 5 (2x >0 V x eIR)
	x . log 5
201	(C) 200 (1)
5a.	x: 2.322 (3dp.)
Va,	$3 \cdot 6x - 2x$
	$\frac{dy}{dx} = 6 - 3x^{1/2}$
56i,	At M, dy
	3x"2 : 6
	x'/2 = 2
	X = H
	when x = 4, y = 6(4) - 2(4)3/2
	* 8
	·· m at (4.8)
2p::	grad at M=0 => grad of normal: -10 : 00
	·· ∝ • 4
5e.	At P, x = 9/4, dy = 6-3(2)/2
	- 3/2
	·· m of normal : -2 (since L)
l NA	laths Made Fasy @ Complete Tuition Ltd 2017


Scii.

6a.

66.

bc.

P.V. x . 0.4636 ...

Fa.

$$36 = 486 = 5 6 = \frac{\pi}{3}$$

JL.

$$u_3 : \frac{\pi}{3}(r_8) + 3$$

8.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$5_{\infty} = \frac{\alpha}{1-r}$$
 $\frac{12}{1-3/8} = \frac{96}{5}$

$$u_6 : ar^5 : 12 \times \left(\frac{3}{8}\right)^5$$

$$= \frac{12 \times 3^5}{8^5}$$

$$\frac{2^{4} \times 3 \times 3^{5}}{2^{15}}$$

=
$$\log_a 12 + (n-1) \log_a (\frac{3}{8})$$

=
$$2\log 2 + \log 3 + n\log_{\alpha}(\frac{3}{8}) - \log_{\alpha}(\frac{3}{8})$$

12 = 2 × 3

85 = (23)5 . 2'5