

		AQP	٩	June	10	C	ع
la.	$A = \frac{1}{2}r^2 \Theta$					hei.	
	$\frac{1}{2}(8)^{2}(1.1)$						
	= 44.8				•		
lb:	$P = 2r + \lambda$	с. С.					
	$l = r \emptyset$					·	
	= 8(1.4) = 11.2						
	P · 2(8) + 11-2						
	= 27.2						
lbi	P.c						
	27.2 = 211x						
	x = 27.2						
	217 = 4-33 (35f	\					
2)					
2a.	$U_{n+1} = 6 + \frac{2}{5}U_n$		u,	* 2			,
	$u_2 : 6 + \frac{2}{5}u_1$)					
	$= 6 + \frac{2}{5}(2)$	2 a			۰.	•	
	² 6.8						
	$U_3 + 6 + \frac{2}{5}U_2$						
rit Are and	$-6+\frac{2}{5}(6.8)$						
0	= 8.72						
21	l = 6 + 2 l						
	58:30+28 =	=7	3e :	: 30		f =	0

Maths Made Easy © Complete Tuition Ltd 2017

Sa. G.P.
$$\alpha = 10$$
 $5_{\infty} = 50$
 $S_{\infty} = \frac{\alpha}{1-r}$
 $50 = \frac{10}{1-r}$
 $50 = 50r = 10$
 $50r = 10$
 $50r = 10$
 $11r$
 $50r = 10$
 $11r$
 1

bi
bi

$$\frac{dy}{dx} = 2x - \frac{1}{2}x^{-\frac{3}{2}}$$

 $\frac{dy}{dx} = 2(1) - \frac{1}{2}(1)^{-\frac{3}{2}}$
 $\frac{3}{2}$
 $\frac{3}{$

.

76: $\sin^{2} 2x = \cos 2x (2 - \cos 2x)$ $\cos 2x = \frac{1}{2}$ OSXET $let \phi, 2x$ $cos\phi = \frac{1}{2}$ 0 \$ \$ \$ 217 P.V. φ · Ţ S $\phi = \frac{\pi}{3}, \frac{5\pi}{3}$ $2x = \frac{\pi}{3}$ x = 0.524 (3sf) C T $2x = \frac{5\pi}{2} x = 2.62$ (3sf) 8a. (0,1) A y = 24(0) = 1 SP. J 2" dx $h = \frac{1-0}{5} = 0.2$ x 9 0 1 2 415 $\int \approx \frac{1}{2} (0.2) \left\{ (1+2^{u}) + 2(2^{u'_{5}} + 2^{8'_{5}} + 2^{10/_{5}} + 2^{10/_{5}}) \right\}$ 0.2 0.4 2 8/5 2 "2'5 0.6 = 50.54803 ... 0.8 2.16/5 ۱ 24 = 5.55 (2dp) Sc. y : 2 " → y: 2"×.3 · 2"× . 2-3 : 1/8.2"x F(x) _ stretch s.f. 1/8 in y direction $\frac{8}{1}$ f(x)

84.
$$f(x) \rightarrow f(x-1) - \frac{1}{2}$$
 translation $\begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix}$
 $y = 2^{u(x-1)} - \frac{1}{2}$
of G , $y \ge 0$
 $0 = 2^{u(x-1)} - \frac{1}{2}$
 $\frac{1}{2} = 2^{ux-u}$
 $2^{-1} : 2^{ux-u}$
 $-1 : ux-u$
 $ux : 3$
 $x \cdot \frac{3}{16}$
8ci. $\log_{2}k \cdot 3\log_{2}2 + \log_{2}5 - \log_{2}44$
 $= \log_{2}2^{2} + \log_{3}5 + \log_{3}\frac{1}{4}$
 $= \log_{3}(8x5 \times \frac{1}{2})$
 $= \log_{3}(8x5 \times \frac{1}{2})$
 $= \log_{3}(0 \quad \therefore \quad k = 10)$
 $3 = \frac{5}{4}$
 $y : 2^{ux-3}$
 2^{ux-3}
 $\frac{5}{4}$
 $(ux-3)\log_{3}2 = \log_{3} \cdot 2 \cdot \log_{3} \cdot 5/4$
 $ux \log_{3} \cdot 2 \cdot \log_{3} \cdot 5/4$
 $ux \log_{3} \cdot 2 \cdot \log_{3} \cdot (5/4)$
 $ux \log_{3} \cdot 2 \cdot \log_{3} \cdot (8 \cdot (5/4))$
 $= \frac{1}{4}$