

AOA Jun 11 C3
10.
$$\int = (x^{3} - 1)^{4}$$

 $\frac{dy}{dx} = 6.3x^{4}.(x^{3} - 1)^{5}$
 $= 18x^{2}(x^{3} - 1)^{5}$
11b. $\int = x \ln x$
 $\frac{dy}{dx} = \ln x + x. \frac{1}{x}$
 $\cdot \ln x + 1$
11b. Uhen $x : e$, $\int = e \ln e = e$ (e,e)
 $\frac{dy}{dx} \cdot \ln e + 1 = 2$
 $\int -e = 2(x - e)$
 $\int = 2x - e$
2a. $\int = (x^{3} - u) \ln(x + 2)$, $\int = 15$
interact Uhen $(x^{2} - u) \ln(x + 2) - 15$
 $\ln e f(x) \cdot (x^{3} - u) \ln(x + 2) - 15$
 $\ln e f(x) \cdot (x^{3} - u) \ln(x + 2) - 15$
 $\ln e f(x) \cdot (x^{3} - u) \ln(x + 2) - 15$
 $f(3x) = -0.9358...$
 $f(3x) = 0.43598...$
 $f(3x) = 0.43598...$
 $2b. (x^{3} - u) \ln(x + 2) = 15$ ($\neq \ln(x + 2)$)
 $(x^{4} - u) = \frac{15}{\ln(x + 2)}$ ($\neq u$)
 $x^{2} \cdot h + \frac{15}{\ln(x + 2)}$
 $x = \pm \sqrt{u + \frac{15}{\ln(x + 2)}}$

•

Maths Made Easy © Complete Tuition Ltd 2017

2c.
$$x_{nn} = \sqrt{u + \frac{u_{x}}{2n(x_{n+2})}}$$

 $x_{1} = 3.5$
 $x_{2} = 3.578$
 $x_{3} = 3.568 (34p)$
3a; $x = \tan(3y+1)$
 $\frac{dx}{dy} = 3 \sec^{2}(3y+1)$
3a. uban $y = -\frac{1}{3}$, $\frac{dx}{dy} = 3 \sec^{2}(3(-y_{3})+1) = 3$
 $\frac{dx}{dx} = \frac{1}{3}$
3b. $-\frac{-n_{2}}{2} = -\frac{-n_{2}}{2}$
 $y = -\frac{n_{2}}{2} = -\frac{-n_{2}}{2}$
 $y = -\frac{n_{1}}{2} = -\frac{-n_{2}}{2} = -\frac{-n_{2}}{2}$
 $y = -\frac{n_{1}}{2} = -\frac{-n_{2}}{2} = -\frac{-n_{2}}{2$

46: let y: 3 cos(1/2x) y : cos(1/2x) $\cos^{-1}\left(\frac{4}{3}\right) + \frac{1}{2}x$ x: 2 cos" (4) $\frac{1}{2} \quad f''(x) \quad 2\cos'\left(\frac{x}{3}\right)$ 46: f"(x) = 1 $2\cos^{-1}(\frac{x}{3}) = 1$ $\omega_{\overline{3}}(\frac{x}{3})$; $\frac{1}{2}$ $\frac{x}{3}$ ' cos(1/2) $x: 3\cos(1/2)$ Lci. $gf(x) = g(3\cos\frac{1}{2}x)$ = 3 cos 1/2 x 1 Len. y = | 3 cos 1/2 x | 0 5 x 5 21 3 0 21 F 42. y: cosx y: 3 cosse stretch s.f. 3 in Zcosx . . y = ,3 cos 1/2 x stretch s.f. 2 in a direction

5

So.
$$\int \frac{1}{3+2\chi} dx$$

$$\frac{1}{2} \int \frac{2}{3+2\chi} dx$$

$$\frac{1}{2} \int \frac{2}{3+2\chi} dx$$

$$\frac{1}{2} \ln |3+2\chi| + c$$

Sb.
$$\int x \sin(\frac{\chi}{2}) dx$$

$$\int x \sin(\frac{\chi}{2}) dx$$

$$\int x \sin(\frac{\chi}{2}) = \int -2 \cos(\frac{\chi}{2}) \cdot 1 dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \int 2 \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \int 2 \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \int 2 \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \frac{1}{2} \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \frac{1}{2} \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} -2x \cos(\frac{\chi}{2}) + \frac{1}{2} \cos(\frac{\chi}{2}) dx$$

$$\frac{1}{2} \int u^{3/2} - u^{3/2} dx$$

$$\frac{1}{9} \left[\frac{2}{5} u^{3/t} - \frac{2}{3} u^{3/t} \right]_{1}^{4}$$

$$= \frac{1}{9} \left(\left(\frac{4}{5} (u)^{3/t} - \frac{2}{3} (u)^{3/t} \right) - \left(\frac{2}{5} (u)^{5/t} - \frac{2}{3} (u)^{3/t} \right) \right)$$

$$= \frac{1}{9} \left(\frac{112}{135} - \left(-\frac{u}{13} \right) \right)$$

$$= \frac{111}{135}$$

$$\frac{1}{135}$$

$$\frac{1}{15}$$

Maths Made Easy © Complete Tuition Ltd 2017

	Visit <u>http://www.mathsmadeeasy.co</u>	uk/ for more	fantastic resources.	
	LOSER ² SC	25		
	col ² x	~ 3		
		•		• 1
	cosec ² x = cot ² x			
	- · cost			
	$\frac{1}{\sin^2 x} \stackrel{\cdot}{=} \frac{\cos^2 x}{\sin^2 x}$			
	$\frac{1}{\sin^2 x} \times \frac{\sin^2 x}{\cos^2 x} =$			- S i
	Sin ² x Los ²	1 605 x	= Bec ² x	
		Los x		
	$\frac{1}{52} = 25$			
	SEC 2 = 25			
ч				
7.	sec 2 = 25			
	25	0 (× < 2r	
	Secsc 2 t 5		~ < 2㎡	
	² t 5			
	Sec x = -5			
		or	sec x = 5	
	× 1.77 1 -1 - 1		sac 2 = 5	
	x = 1.77°, 4.51° (porta		cosx = 1/5	
			15	
			P.V. x = 1.369	e
			S A	
			- 1	
			V	
			1	
			T	
	. · · · · · · · · · · · · · · · · · · ·		1	
			a = 1,37, 4.0	. c
8a,	24			
Sa,	e = 4			
	-2x = ln4			
				¢
	× · - 1/2 ln 4		·	
	~			
Spi,	y . 1 2×			
	y = 4e ^{-2x} - e ^{-wx}		,	,
	when x=0, y= Le	-e°		
	9		and Ann	
	* 3		A (0,3)	

01	Visit <u>http://www.mathsmadeeasy.co.uk/</u> for more fantastic resources.
8P"	at B. y.o
	Le ^{-2x} x (Since e 2x to can divide by it)
	4-e ^{-2x} = 0
	$4 = e^{-2x}$
	$SC = -\frac{1}{2} ln 4 (from 8a)$
	2 ln 4 ⁻¹¹²
	· ln j
8P"	$y = 4e^{-2x} - e^{-4x}$
1	$dy = -8e^{-2x} + Le^{-Lx}$
	at st. pt. $\frac{dy}{dx} = 0$
	8e ⁻²² : 4e ^{-ux} (xe ^{ux})
	8e ^{2x} = 4
	$e^{3x} = \frac{1}{2}$
	$2x \cdot e_{n}\left(\frac{1}{2}\right)$
	$x = \frac{1}{2} e_{n}(\frac{1}{2})$
SP11	$V = \pi \int_{0}^{R_{n^{2}}} y^{2} dx$
	$y = 4e^{-2x} - e^{-4x}$
	y^2 : ($ue^{-2x} - e^{-ux}$)($ue^{-2x} - e^{-ux}$)
	$= 16e^{-6x} - 8e^{-6x} + e^{-8x}$

$$V : \Pi \int_{0}^{\ln^{2}} 1be^{-ux} \cdot 8e^{-bx} + e^{-8x} dx$$

$$: \Pi \left[-ue^{-ux} + \frac{u}{3}e^{-6x} - \frac{1}{8}e^{-8x} \right]_{0}^{2n^{2}}$$

$$: \Pi \left(\left(-ue^{-u^{2}n^{2}} + \frac{u}{3}e^{-b^{2}n^{2}} - \frac{1}{8}e^{-8u^{2}} \right) - \left(-ue^{\circ} + \frac{u}{3}e^{\circ} - \frac{1}{8}e^{\circ} \right) \right)$$

$$: \Pi \left(\left(-\frac{1}{u} + \frac{1}{u^{2}} - \frac{1}{2u^{2}} \right) - \left(-\frac{6\pi}{2u} \right) \right)$$

$$: \Pi \left(\left(-\frac{1u\pi}{61u_{1}} + \frac{6\pi}{2u} \right) - \left(-\frac{6\pi}{2u} \right) \right)$$

$$: \frac{52u\pi}{2ou^{2}} \Pi$$
