

Maths Made Easy © Complete Tuition Ltd 2017

$$3x + 2y = 7 \qquad <(2, -1)$$

$$2y = 7 - 3x$$

$$y = \frac{7}{4} - \frac{3}{2} = 7 \qquad m = -\frac{3}{2}$$

$$y = 7 - 7 = -\frac{3}{2}(x - 2)$$

$$2y + 14 = -3x + 4$$
when it encess like y and, x = 0

$$2y + 14 = -3(2) + 6$$

$$2y = -3$$

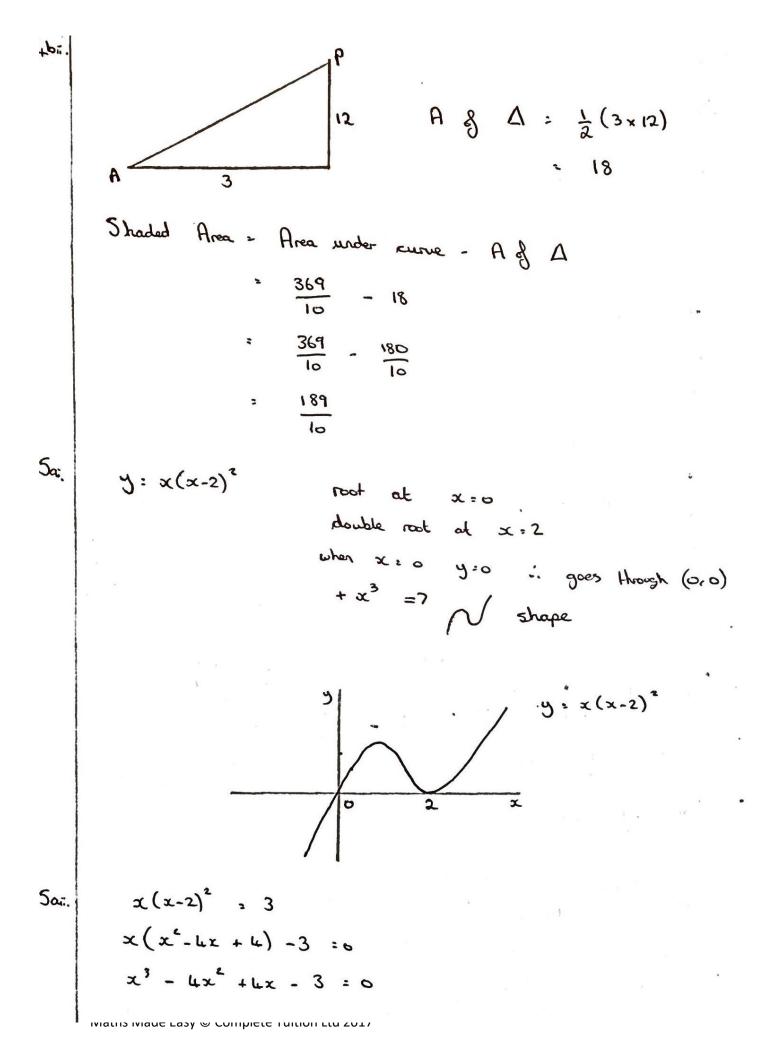
$$y = -4$$

$$3k \qquad y = 1 - 4x$$

$$y = 1 - 4x$$

Maths Made Easy © Complete Tuition Ltd 2017

Lai,


$$\begin{array}{rcl}
\frac{d_{1}}{dt} &= -1 - 4x^{3} \\
\frac{d_{2}}{dt} &= -1 - 4x^{3} \\
\text{when } x \cdot 1 &; & \frac{d_{2}}{dt} &= -1 - 4(1)^{3} \\
&= -1 - 4 \\
&= -5
\end{array}$$
Leas,

$$\begin{array}{rcl}
m & g & \text{tangent} &= -5 & P(1,12) \\
y - 12 &= -5(x - 1) \\
y - 12 &= -5(x - 1) \\
y - 12 &= -5x + 5 \\
y &= -5x + 17 \\
\end{array}$$
Leas,

$$\begin{array}{rcl}
1 &= -x - x^{4} & 4x \\
&= \left[14x - \frac{1}{2}x^{4} - \frac{1}{5}x^{5} \right]_{-2}^{1} \\
&= \left(14(1) - \frac{1}{2}(1)^{2} - \frac{1}{3}(1)^{5} \right) - \left(14(-2) - \frac{1}{2}(-2)^{3} - \frac{1}{5}(-2)^{5} \right) \\
&= \left(14x - \frac{1}{2} - \frac{1}{3} \right) - \left(-28 + -2 + \frac{32}{5} \right) \\
&= 14x - \frac{1}{2} - \frac{1}{3} + 28 + 2 - \frac{32}{5} \\
&= \frac{144}{10} - \frac{1}{2} - \frac{15}{10} - \frac{66}{10} \\
&= \frac{369}{10}
\end{array}$$

Iviatits Iviaue Lasy & Complete Tuition Ltd 2017

.

.

÷

6a:
$$e(-3,1)$$
 $r = \sqrt{13}$
6a: $(x+3)^2 + (y-1)^2 = 13$
 $x^2 + 6x + 9 + y^2 - 2y + 1 = 13$
 $x^2 + y^2 + 6x - 2y - 3 = 0$
6b. crosses the y axis when $x = 0$
 $0^2 + y^2 + 6(0) - 2y - 3 = 0$
 $y^2 - 2y - 3 = 0$
 $(y+1)(y-3) = 0$
 y^{2-1} or $y=3$
5o A $(0,-1)$ B $(0,3)$
 $distance AB = 14$
6ci x_{2-5} , $y = -2$
 $(-5+5)^2 + (-2-1)^2 = 13$
 $(-2)^2 + (-3)^5 = 13$
 $(2)^2 + (-3)^5 = 13$
 $(-5,-2)$ hiss on einster
6ci $e(-3,1)$ D $(-5,-2)$
 $\frac{1-2}{-3-5} = \frac{3}{2}$
6ci m of kongul $z = \frac{2}{8} \frac{2}{3}$ (since $\frac{1}{16}$ k = CD)
 $y^{-2} = -\frac{2}{3} (x_{2-5})$
 $3y + 6 = -2x - 10$
 $2x + 3y + 16 = 0$

Maths Made Easy © Complete Tuition Ltd 2017

Fail
$$u = 10x - x^{4} = -(x^{4} + 10x - u)$$

 $= -((x+s)^{5} - 25 - u)$
 $: 29 - (x+s)^{4}$
Tan $x = -5$
This $y = u - 10x - x^{4}$ $y = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(ux - 13)$
 $u = 10x - x^{4} = k(13k + u) = 0$
 $x^{4} + 2(2k+5)x - (13k + u) = 0$
 $(4k + 10)^{2} - 4(1)(-(13k+u)) = 0$
 $16k^{4} + 80k + 100 + 4(13k + u) = 0$
 $16k^{4} + 80k + 100 + 32k + 11k = 0$
 $16k^{4} + 33k + 29 = 0$
This $(4k + 29)(k+1) = 0$
 $c.v.s = k = -1$
 $u = \frac{24}{4}$
 $k = -1$

۱