Henry and Poppy
 have fun with numbers

Year 5 maths
 part 2

(for 9-10 year olds)

We had fun making these questions for you. Enjoy them.

It's easy to explain this with pizzas!
This is one pizza and a quarter of a pizza or $11 / 4$

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

An Improper fraction has a top number bigger than (or equal to) the bottom number

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

1 mark

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

1 mark

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

If you put four quarters together they make one whole with one piece left over, so

$$
\frac{5}{4}=1 \frac{1}{4}
$$

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

Change these improper fractions into mixed numbers.

2 marks

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

Change these improper fractions into mixed numbers.

2 marks

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$] numbers into an improper fraction, like
 the one below

top of fraction

whole

Multiply the whole by the bottom of the fraction then add the top of the fraction

$$
\begin{gathered}
\text { So } 1 \times 3+2=5 \\
1 \frac{2}{3}=\frac{5}{3}
\end{gathered}
$$

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

11

Change these mixed numbers into improper fractions.

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

12

Change these mixed numbers into improper fractions.

2 marks

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

13

Change these mixed numbers into improper fractions.

2 marks

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

15

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

2 marks

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

1 mark

5F2a: Recognise mixed numbers and improper fractions and convert from one form to the other; write mathematical statements >1 as a mixed number [e.g.: $2 / 5+4 / 5=11 / 5$]

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

2
 Complete the missing numerator (top)

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

3 Complete the missing numerator (top)

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

Complete the missing numerator (top)

3 marks

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
$5 \quad$ Complete the missing numerator (top)

3 marks

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

Complete the missing numerator (top)

$$
\begin{aligned}
& \frac{10}{100}=\frac{}{10} \\
& \frac{25}{100}=\frac{}{20} \\
& \frac{6}{10}=\frac{}{100}
\end{aligned}
$$

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

$$
\begin{aligned}
& \frac{10}{100}=\overline{10}=\overline{20}=\frac{50}{100}=\overline{20}=\overline{4}=\overline{40} \\
& \frac{25}{10}=\overline{100}=\overline{20}=\frac{5}{5}
\end{aligned}
$$

5F2b: identify name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths

Smallest

Largest

1 mark

5F3: Compare and order fractions whose denominators are all multiples of the same number

2 Use < , > or = for each pair of fractions.

3 marks

5F3: Compare and order fractions whose denominators are all multiples of the same number

3 marks

5F3: Compare and order fractions whose denominators are all multiples of the same number

Look at the fraction cards.
$\frac{2}{3} \quad \frac{5}{6} \quad \frac{7}{9} \quad \frac{9}{12}$

Use any three of the cards to make this correct.

1 mark

5F3: Compare and order fractions whose denominators are all multiples of the same number

$$
\begin{aligned}
& \frac{1}{5}+\frac{3}{5}=\square \\
& \frac{6}{10}+\frac{3}{10}=\square \\
& \frac{3}{4}+\frac{3}{4}=\square
\end{aligned}
$$

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

Complete the following

$$
\begin{aligned}
& \frac{1}{6}+\frac{3}{6}=\square \\
& \frac{6}{7}+\frac{1}{7}=\square \\
& \frac{3}{8}+\frac{5}{8}=\square
\end{aligned}
$$

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

$$
\begin{aligned}
& \frac{5}{6}-\frac{3}{6}=\square \\
& \frac{6}{7}-\frac{1}{7}=\square \\
& \frac{7}{8}-\frac{5}{8}=\square
\end{aligned}
$$

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

Complete the following

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

8 Subtract the fractions and colour the shape

3 marks

5F4: Add and subtract fractions with the same denominator and denominators that are multiples of the same number

That's 3 pieces of $\frac{1}{2}$ or $3 \times \frac{1}{2}=\frac{3}{2}=1 \frac{1}{2}$

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

I had a party with four friends and we eat a quarter pizza each

How much is that as an improper fraction and a mixed number

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

$$
\text { Which one of these pictures shows } 3 \times \frac{1}{5}
$$

1 mark

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

$$
\text { Which one of these pictures shows } 3 \times \frac{1}{4}
$$

\square
\square

1 mark

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

Can you do these without seeing the pizza

$$
\begin{aligned}
& 4 \times \frac{3}{4}=\square \\
& 2 \times \frac{3}{5}=\square \\
& 10 \times \frac{2}{5}=\square
\end{aligned}
$$

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

I am 120 cm tall. My doll is $\frac{1}{10}$ th as tall as me How high is my doll

1 mark

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

Distance to Granddad's house

60 miles

$$
\begin{aligned}
& \frac{1}{6} \text { of the distance }=\square \text { miles } \\
& \frac{1}{10} \text { of the distance }=\square \text { miles } \\
& \frac{1}{5} \text { of the distance }=\square \text { miles }
\end{aligned}
$$

$$
3 \text { marks }
$$

5F5: Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams

1 Match the fractions and decimal numbers.

5F6a - Read and write decimal numbers as fractions [e.g.: $0.71=71 / 100$]

2 Match the fractions and decimals with a line

5F6a - Read and write decimal numbers as fractions [e.g.: $0.71=71 / 100$]

5F6a - Read and write decimal numbers as fractions [e.g.: $0.71=71 / 100$]

1 mark

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

Write the digit that is in the one thousandth place

1 mark

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

Write the digit that is in the one hundredth place

\square

1 mark

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

Write the decimals in thousandths

1 mark

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

4 Write the fractions in hundredths

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

Write the fractions in tenths

1 mark

5F6b - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place. decimal places?

12.34

Yes, there are two numbers after the decimal point: 3 and 4

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.

> So what's this number to two decimal places

32.123

There are three numbers after the decimal point so we have to ignore one - it will be 32.12

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.

Oh that's a tricky one. Because the last number is 5 we round up the 2 to 3

- it will be 32.13

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place. number

$6.15 \rightarrow$ \square $6.43 \rightarrow$ \square $6.75 \rightarrow$

2 marks

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.

Round these decimals to one decimal place

$6.15 \rightarrow$

$6.43 \rightarrow$

$6.75 \rightarrow$

2 marks

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.
$7 \quad$ Round these decimals to the nearest whole number

2 marks

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.

8 Round these decimals to one decimal place

5F7: Round decimals with two decimal places to the nearest whole number and to one decimal place.

1 Order these decimals starting with the smallest.

1 mark

5F8: Read, write, order and compare numbers with up to three decimal places.

2 Order these decimals starting with the smallest.

1 mark

5F8: Read, write, order and compare numbers with up to three decimal places.

For each pair, tick (\checkmark) the smallest decimal

5F8: Read, write, order and compare numbers with up to three decimal places.

Poppy and I went for a walk to Nanny's house

Each way it is 1.23 km How far is it there and back?

5F10: Solve problems involving numbers up to three decimal places Poppy went for a car drive with mummy. First she went to the supermarket -4.65 km Then to the play centre -2.35 km Then back home -3.75 km How far did she travel altogether

5F10: Solve problems involving numbers up to three decimal places

Coventry is 7.86 km west of poppy's house.
 Nuneaton is 5.69 km east of poppy's house.
 How far apart are Coventry and Nuneaton

$C \leftarrow P \rightarrow N$

1 mark

5F10: Solve problems involving numbers up to three decimal places
Henry went to the shop
He spent £0.89 on bread
£1.23 on butter and $£ 2.99$ on cakes

How much did he spend

$£$

1 mark

5F10: Solve problems involving numbers up to three decimal places How long were the sticks altogether.

5F10: Solve problems involving numbers up to three decimal places

What was the difference in their lengths

1 mark

5F10: Solve problems involving numbers up to three decimal places
$7 \quad$ Order these lengths starting with the smallest.
$123 \mathrm{~cm} \quad 1.3 \mathrm{~m} \quad 0.31 \mathrm{~m} \quad 25 \mathrm{~cm} \quad 10 \mathrm{~m}$

1 mark

5F10: Solve problems involving numbers up to three decimal places

8 Order these numbers starting with the smallest.

0.123
 0.012
 0.003
 0.103
 0.120

5F10: Solve problems involving numbers up to three decimal places

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

The two 0's in the percent sign and the slash come from the hundred: 100

That's right. 0 means out of 100
ognise the per cent symbol (\%) and of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

1 mark

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

What
 $0 / 0$ is shaded

1 mark

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

> To change a decimal to a percentage $\%$ move the decimal point two places to make the number bigger like this
$0.21 \rightarrow \frac{21}{100} \rightarrow 21 \%$
$0.6 \rightarrow \frac{60}{100} \rightarrow 60 \%$
$0.09 \rightarrow \frac{9}{100} \rightarrow 9 \%$
If the decimal is like 0.6 put a zero after it then move the point $0.6 \rightarrow 0.60 \rightarrow 60 \%$

5F11: Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'; write percentages as a fraction with denominator hundred, and as a decimal.

SALE 50% off coats

How much would I pay for a coat that usually costs $£ 50$

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

SALE 25% off ipads

> How much would I pay for an ipad that usually costs $£ 240$

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

fraction

decimal

percentage

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

25% as a decimal

20% as a fraction

4 marks

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25
\square
$\frac{3}{25}$ as a decimal
$\frac{8}{50}$ as a percentage
0.75 as a percentage

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

In a test out of 20 marks I got
20%. How many marks did I get?

It only works when you have two zeros in the problem

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

OK let's do these percentages

$30 \% / \%$ of 30 becomes $3 \times 3=9$
$60 \% / \%$ of 50 becomes $6 \times 5=30$

What is

2 marks

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

2 marks

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

For 75% of 8 , halve it gives $4(50 \%, 1 / 2$) then halve again gives 2. $(25 \%, 1 / 4)$ Then add them $50 \%+25 \%$ to get $6(3 / 4)$

2 marks

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

If you get 44% of 25 you can move the \% to the other number

So 44% of 25 becomes 25% of 44

That's $1 / 4$ of $44=11$
Yippee I'm a genius!

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

5 marks

5F12: Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4$, $1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

1 mark

5M4: Solve problems involving converting between units of time

It's $21 / 2$ days to my birthday

How many hours is that

5M4: Solve problems involving converting between units of time

3 In a school the morning lessons lasted $21 / 2$ hours.

We watched a video for 28 minutes.

How much time was left?

1 mark

5M4: Solve problems involving converting between units of time

5M4: Solve problems involving converting between units of time

3 hour 45 minutes +2 hours 46 minutes

1 mark

5M4: Solve problems involving converting between units of time

.. and I am 6 years 11 months old

What's the difference between our ages
in years and months
$\mathrm{yr} \quad \mathrm{mn}$

1 mark

5M4: Solve problems involving converting between units of time

5M4: Solve problems involving converting between units of time

What's the difference between these two times

$\mathrm{hr} \quad \mathrm{min}$

1 mark

5M4: Solve problems involving converting between units of time

1 Convert the units
$2 \mathrm{~km}=\square$ metres
$10 \mathrm{~km}=\square$ metres
$0.5 \mathrm{~km}=\square$ metres
$\frac{1}{10} \mathrm{~km}=\square$ metres

5M5:Convert between different units of metric measure [e.g.: kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

2 Convert the units

4 marks

5M5:Convert between different units of metric measure [e.g.: kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

3 Convert the units

5M5:Convert between different units of metric measure [e.g.: kilometre and metre;
centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

4 Convert the units

5M5:Convert between different units of metric measure [e.g.: kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

5 Convert the units

5M5:Convert between different units of metric measure [e.g.: kilometre and metre;
centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre]

1 Convert the units

4 marks

5M6: understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints

2 What is 10 inches approximately

40 cm

\square

What is 5 kg approximately

11 pound
11 stone

What is 5 cm approximately
2 inches
1 inch

3 marks

5M6: understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints

What is 9 litres approximately

2 gallon
1 gallon
\square
\square

What is 5 cm approximately

2 inches

1 inch

5M6: understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints

Poppy said the perimeter of shape A was bigger than shape B on the 1 cm squared grid.
Was she correct?.

Perimeter of $A=$

5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

Henry said the perimeter of shape D was twice as big as shape C on the 1 cm squared grid. Was he correct?

Perimeter of $\mathrm{C}=$

Perimeter of $D=$

3 marks
5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

Work out the perimeter of this shape on the cm grid

1 mark
5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

4

Work out the perimeter of this rectangle

5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

Work out the perimeter of this shape

5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

6

Work out the perimeter of this shape

cm
1 mark

5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

7 Work out the perimeter of this symmetrical shape in centimetres

1 mark

5M7a: measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres

Work out the area of this shape

1 mark
5M7b: calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes

2

Work out the area of this shape in square units

square units

5M7b: calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes

5M7b: calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes

Henry said the area of shape D was twice as big as shape C. Was he correct?.

5M7b: calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes

Work out the volume of this shape in square units

square units

1 mark
5M8: Estimate volume [e.g.: using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [e.g.: using water]

2

What is the volume of this shape made with $1 \mathrm{~cm}^{3}$ cubes

5M8: Estimate volume [e.g.: using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [e.g. :using water]

Henry needs one litre of orange
What volume of liquid does he need to add to the jug

1 mark
5M8: Estimate volume [e.g.: using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [e.g.: using water]

4

Henry needs one litre of orange
Estimate how many cups of 150 ml he needs to pour into the jug

5M8: Estimate volume [e.g.: using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and
capacity [e.g.: using water]

I had bunting all around the garden at my birthday party

Yes, it was $£ 0.40$ per metre

Can you work out how much it cost to go all the way around the garden

5M9b: Use all four operations to solve problems involving measure [e.g.: length] using decimal notation, including scaling

Can you work out how wide her garden is for butting to cost $£ 26.60$

5M9b: Use all four operations to solve problems involving measure [e.g.: length] using decimal notation, including scaling

2 marks

5M9c: Use all four operations to solve problems involving measure [e.g.: mass] using decimal notation, including scaling.

A banana weighs 70 grams.
How much does one orange weigh

5M9c: Use all four operations to solve problems involving measure [e.g.: mass] using decimal notation, including scaling.

1 Henry sells each 150 ml cup for 50 p
It costs him 75 p to make a full jug of orange.

What is the most profit he can make

1 mark

5M9d: Use all four operations to solve problems involving measure [e.g.: volume] using decimal notation, including scaling

If I put it into the jug the water level will rise. It starts at 500 ml .
What will the new water level be

5M9d: Use all four operations to solve problems involving measure [e.g.: volume] using decimal notation, including scaling

1 mark

5G2a Use the properties of rectangles to deduce related facts and find missing lengths and angles

1 mark

5G2a Use the properties of rectangles to deduce related facts and find missing lengths and angles

Can you find the missing lengths on this shape

Then work out the area

2 marks

5G2a Use the properties of rectangles to deduce related facts and find missing lengths and angles

Can you find the missing lengths on this shape

Then work out the area

2 marks

5G2a Use the properties of rectangles to deduce related facts and find missing lengths and angles

A POLYGON is a shape with several sides

So an OCTAGON has 8 sides. OCT means 8 like for an octopus

So shapes like a triangle or a square are polygons

Yes and if the sides are the same length and all angles are equal it's a Regular Polygon

5G2b Distinguish between regular and irregular polygons based on reasoning about equal sides and angles regular polygons with an R and irregular ones with an IR

5G2b Distinguish between regular and irregular polygons based on reasoning about equal sides and angles

5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

\square
\square
\square
\square 1 mark
5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

3 I saw a 3-D shape which looked like a triangle. Which ones could it be

5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

5 I made 3-D shape with a triangular base Which one was it

1 mark
5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

6 This 3-D shape looked like two rectangles Which one was it

1 mark
5G3b: Identify 3-D shapes including cubes and other cuboids, from 2-D representations

Mark each angle as acute (A) or Obtuse (O)

\square
\square
\square
\square
\square

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

Order these angles by size with 1 the smallest

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

| acute reflex obtuse right |
| :--- | :--- | :--- | :--- | :--- |
| 1 mark |

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

They are the same size \square
B is bigger than A

A is bigger than B

\square

1 mark

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

\square

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

7

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

5G4a: Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles

Calculate the missing angles

5G4b: Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°

Calculate the missing angles

3 marks

5G4b: Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°

5G4b: Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°

4 Where is the pointer after moving 180° anti-clockwise (\checkmark)

1 mark

5G4b: Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°

5 Where is the pointer after moving 360° anti-clockwise (\checkmark)

1 mark

5G4b: Identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°

5G4C: Draw given angles and measure them in degrees $\left({ }^{\circ}\right)$

Measure the angles in these shapes and write them in

5G4C: Draw given angles and measure them in degrees $\left({ }^{\circ}\right)$

On the line draw an angle of 120° at the point using a protractor, pencil and ruler

1 mark

5G4C: Draw given angles and measure them in degrees $\left({ }^{\circ}\right)$

If I reflect this shape in the mirror line it looks like this

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Draw the reflection of this shape in the mirror line

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Draw the reflection of this shape in the mirror line

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Draw the reflection of this shape in the mirror line

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Using the reflection find the missing co-ordinate C

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Draw the reflection of this shape in the two mirror line

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Shape A has been translated 2 places right.

Then two places up.

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Translate the shape 2 units up and 3 units right

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

The grid has a Y-axis upwards vertically and a Xaxis across horizontally
So translation can be explained with those.

OK so translate the shape 5 units in the X -axis right and 4 units in the Y axis up

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Describe how see gets to the treasure as if she was doing a translation

Translation in X -axis is

Translation in Y-axis is \square

1 mark

5P2: Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

Luton Galaxy	0730	0800	0830
Stanton Road	0737	0807	0837
Portland Road	0745	0815	0844
Houghton Regis	0747	0816	0846
Toddington	0755	0825	0855

I kept a log of Mummy's emails this week

1 mark

5S2: Solve comparison, sum and difference problems using information presented in a line graph

5S2: Solve comparison, sum and difference problems using information presented in a line graph

5S2: Solve comparison, sum and difference problems using information presented in a line graph

Day	Text messages
Monday	5
Tuesday	15
Wednesday	15
Thursday	25
Friday	25
Saturday	20
Sunday	25

5S2: Solve comparison, sum and difference problems using information presented in a line graph

This line graph show how many in my class had packed lunch

5S2: Solve comparison, sum and difference problems using information presented in a line graph

Convert the information in the table to a line graph showing how many in my class had packed lunch

5S2: Solve comparison, sum and difference problems using information presented in a line graph

