Ma

YEAR 7

3-4

7000

Mathematics test

Paper 2

Calculator allowed

First name	
Last name	
School	

Remember

- The test is 45 minutes long.
- You may use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler, angle measurer or protractor and a calculator.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

TOTAL MARKS	
Borderline check	

Instructions

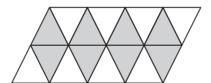
Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **may** use a calculator to answer any question in this test.

1

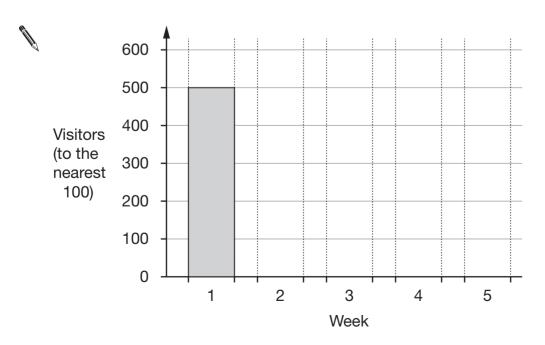

Which of these coins make exactly £1.10? Tick (\checkmark) them.

1 mark

2

Look at the shape.

What **fraction** of the shape is shaded?



The table shows how many people visit a museum in five weeks.

Week	Number of visitors	Rounded to the nearest hundred
1	453	500
2	328	
3	557	
4	299	
5	356	

1 mark

- (a) Complete the table above by rounding each number to the **nearest hundred**. The first one is done for you.
- (b) Now use the **rounded values** to complete the bar chart below. The first bar is done for you.

2 marks

4		
	1	
	4	
١.		

Tick (\checkmark) the best estimate for each of the following.

(a)	The	heigh	it of	a c	door.

	2 millimetres	2 centimetres

1 mark

(b) The length of a pen.

14 millimetres

2 metres

14 centimetres

2 kilometres

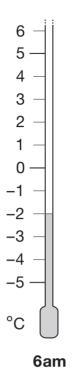
14 metres

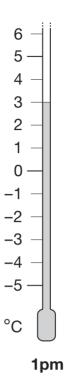
14 kilometres

1 mark

(c) The distance between Leeds and Manchester.

64 millimetres

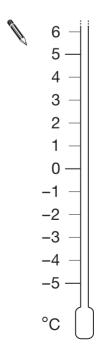

64 centimetres


64 metres

64 kilometres

5

The thermometers show the temperature at different times on one day.


(a) Write the missing number below.

From **6am** to **1pm** the temperature went up by ______

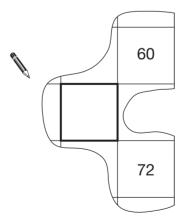
1 mark

(b) From 1pm to 6pm the temperature went down by 7°C
Shade the thermometer to show
the temperature at 6pm.

1 mark

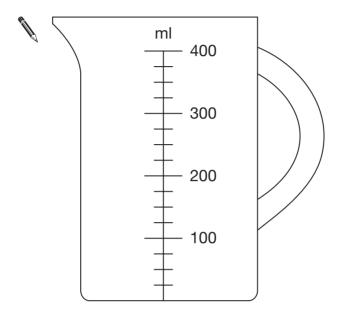
6pm

Here is part of a number grid.

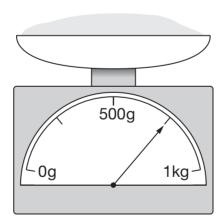

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

(a) What number is in the square below the number 24?

1 mark


(b) Here is another part of the **same grid**.Write in the missing number.

Raj is making a cake.


He pours 275ml of milk into a jug.

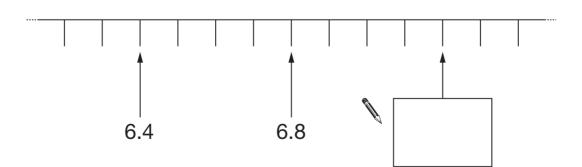
(a) Draw a line on the jug to show the level of milk.

1 mark

(b) The scales below show how much flour he uses.

How much flour does Raj use?

(c) Raj put the cake in the oven at 4:00pm.


He took the cake out of the oven after $1\frac{1}{2}$ hours.

At what time did he take the cake out of the oven?

____ pm _____

8 Look at the number line below.

Write the missing number in the box.

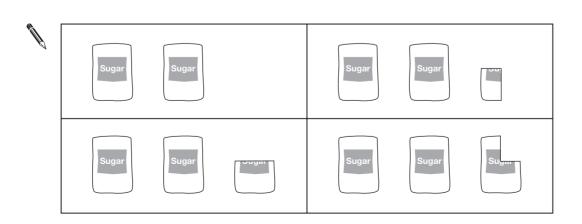
9

This question is about the number of bags of sugar you could buy with £10

Year	Number of bags								
1995	Sugar Sugar Sugar								
1999	Sugar Sugar Sugar								

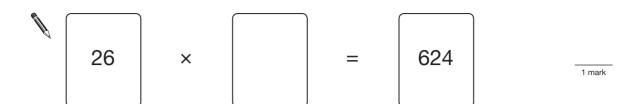
(a) In 1995 you could buy 16 bags of sugar.

How many bags of sugar could you buy in 1999?



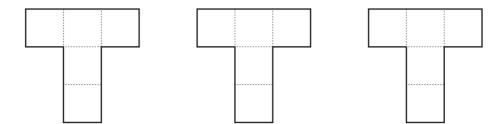
1 mark

(b) In 2003 you could buy 9 bags of sugar.


Which drawing below represents 9 bags of sugar?

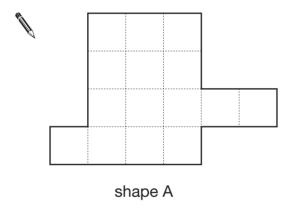
Tick (\checkmark) the correct drawing.

10 (a) Write the missing number.



(b) Now write what the missing numbers below could be.

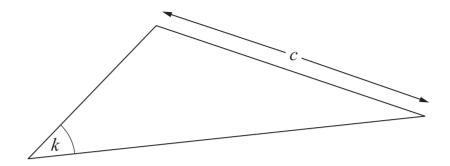
Each number must be greater than 10



Here are three T-shapes drawn on centimetre square grids.

(a) The three T-shapes fit together to make shape A.

Show the three T-shapes on the diagram below.



1 mark

(b) What is the **total area** of shape A?

Look at the triangle.

(a) Measure accurately length \boldsymbol{c}

1 mark

(b) Measure accurately angle \boldsymbol{k}

Look at the fraction diagram.

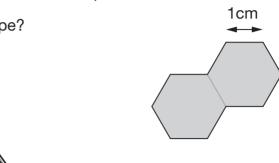
1										
	1/2			1/2						
-	<u>1</u>	-	1 3	-	1 3					
<u>1</u> 6	<u>1</u> 6	1 6	<u>1</u> 6	<u>1</u> 6	<u>1</u> 6					

Write the missing numbers in the boxes below.

$$\frac{1}{2} = \frac{6}{6}$$

$$\frac{\boxed{3}}{3} = \frac{4}{6}$$

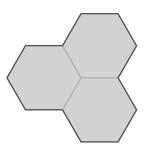
1 mark

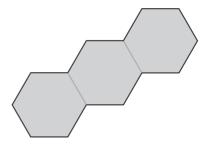

1 mark

All the hexagons in this question are the same size.

Each side of a hexagon is 1cm long.

(a) I put two hexagons together to make this shape.


What is the **perimeter** of the shape?


cm

1 mark

(b) I put three hexagons together to make different shapes.

Shape A

Shape **B**

Which shape has the **smaller** perimeter?

Tick (✓) the correct box.

| A

Both the same

Explain how you know.

Starlings are birds that live in groups.

The chart shows the **ages** of a group of starlings.

Female starlings					Age	Male starlings							
						1 year							
						2 years							
						3 years							
						4 years							
						5 years							
						6 years							
						7 years							
						8 years							
						9 years							

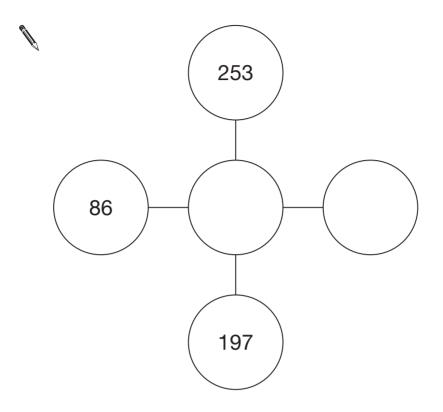
In the chart, each square represents 3 starlings.

(a)	How many	female	starlings	are	aged	4	years?	?
-----	----------	--------	-----------	-----	------	---	--------	---

•	female	
		1 ma

(b) How many **male** starlings are aged **4 years**?

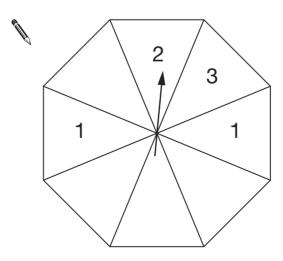
male	
	1 mark


(c) More male starlings than female starlings are aged 6 years or older.
How many more?

16

16

Write numbers in the circles to make the three numbers along each line add up to 678


2 marks

17

The diagram shows a fair spinner divided into 8 equal sections.

I am going to spin the pointer.

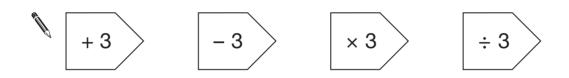
Write numbers on the blank sections so that there is a **50% chance** that I will spin an **odd number**.

The diagram shows what Molly buys.

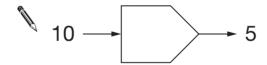
She pays with a £5 note and gets 66p change.

How much did Molly pay for the shampoo?

£


2 marks

19 (a) A rule changes $1\frac{1}{2}$ to $4\frac{1}{2}$


What could the rule be?

Tick (\checkmark) the **two** correct answers below.

(b) A rule changes 10 to 5

What could the rule be? Give two different answers.

1 mark

