Ma

YEAR
7

3-4

7007

Mathematics test

Paper 1

Calculator not allowed

First name	 	
Last name	 	
School		

Remember

- The test is 45 minutes long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber and a ruler.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

TOTAL MARKS

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

Look at the information about recycling places in one town.

Recycling place	Glass	Cans	Plastic	Paper	Clothes	Shoes
Supermarket A	✓	√		✓	✓	✓
Supermarket B	✓					
Supermarket C	✓	√	✓			✓
Car park D	✓			✓	✓	
Car park E	✓	✓				
Road F	✓	✓		✓		

	(a) How many of these places recycle paper ?
1 mark	

(b) One of these places recycles **plastic**.
Which place is this?

(c) Molly wants to go to one of the places to recycle cans and clothes.
Which place should she go to?

Here are three numbers.

7

8

25

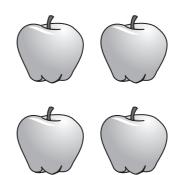
(a) What is the **sum** of the three numbers?

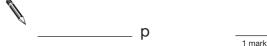
1 mark

(b) What is the difference between the largest number and the smallest number?

1 mark

(c) Write a calculation using all three numbers that gives the answer 10




(a) Jack buys four apples.

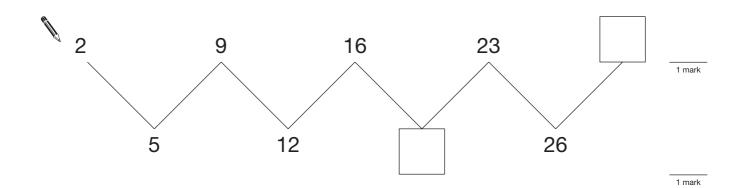
He pays with a £2 coin.

He gets £1.20 change.

How much does **one** apple cost?

(b) Oranges cost **15p** each.

Raj has a £1 coin.



What is the greatest number of oranges Raj can buy with £1?

Look at this number sequence.

Write the missing numbers in the boxes.

5

Molly wants to decorate some cakes.

Each cake will have 3 cherries.

Molly has 48 cherries.

How many cakes can she decorate?

Calculate the following.

$$347 + 62 =$$

1 mark

$$154 - 81 =$$

1 mark

$$74 \times 5 =$$

1 mar

$$378 \div 3 =$$

7		

Look at these statements about **rectangles**.

For each statement, tick (\checkmark) True or False.

The first one is done for you.

All rectangles have four sides.	True	False
All rectangles have four equal sides.		
Some rectangles have no right angles.		
All rectangles have at least one line of symmetry.		1 mark

Y7/07/Ma/Levels 3–4/P1 8

(a) 32 + 47 is **bigger** than 32 + 43

How much bigger?

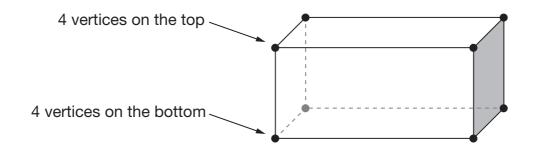
1 mark

(b) 7×9 is **bigger** than 6×9 How much bigger?

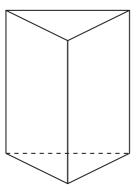
1 mark

9

Write the missing numbers.



$$= \frac{1}{2} \text{ of } 16$$


1 mark

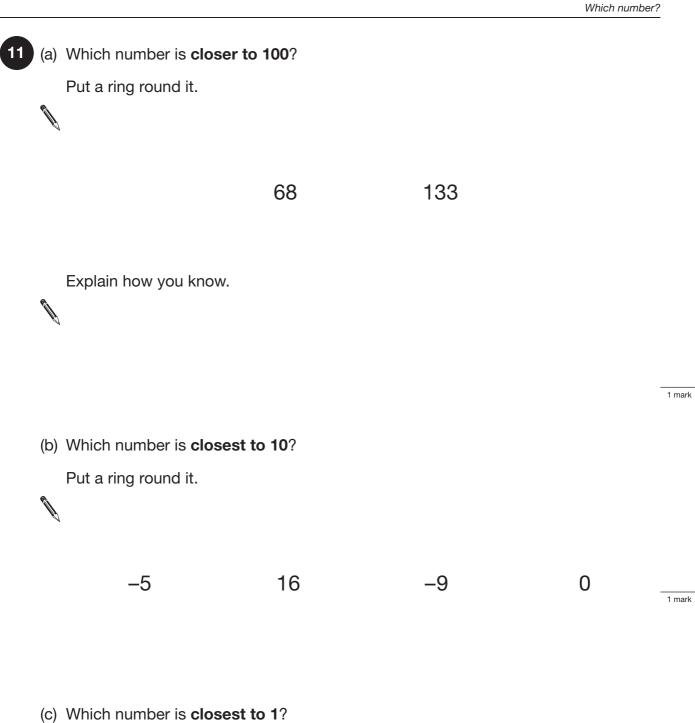
double
$$=$$
 $\frac{1}{2}$ of 16

A cuboid has 8 vertices.

(a) How many vertices does this 3-D shape have?

1 mark

(b) A different 3-D shape has 8 vertices.


It has 6 faces. Each face is the same.

Put a ring round the correct name for this 3-D shape.

square pyramid cylinder

cube rectangle

(c) Which number is closest to 1?Put a ring round it.

1.4

1.35

0

1.65

The table shows the times that street lights come on one night and go off the next morning.

City	Time the lights come on (pm)	Time the lights go off (am)
Belfast	6:45	6:13
Glasgow	6:40	6:05
London	6:21	5:51
Manchester	6:30	5:59
Newcastle	6:28	5:55

(a) Complete the sentence below.

In Manchester, the lights come on 15 minutes earlier than

they	do i	in			
-)					

1 mark

(b) In ${\bf Glasgow},$ the lights go ${\bf off}$ later than they do in ${\bf Newcastle}.$

How much later?

minutes

1 mark

(c) In Ashford the lights come on at 6:20pm.

The lights go off $11\frac{1}{2}$ hours later.

Complete the table below.

City	Time the lights come on (pm)	Time the lights go off (am)	
Ashford	6:20	:	

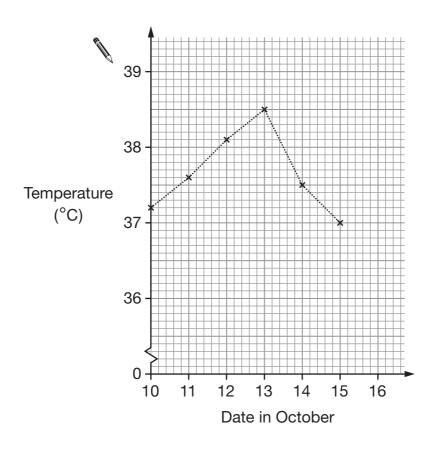
13 (a)	Write a number that is both
	greater than 10

and a multiple of 4

1 mark

(b) Now write a number that is **both**

greater than 10

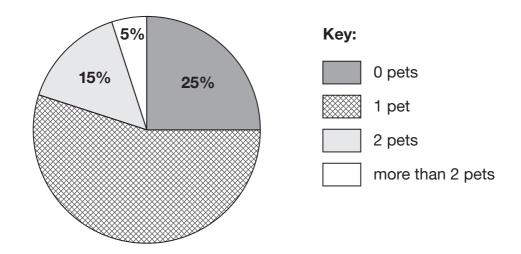

and

a square number

In October, Jack was ill.

Here is his temperature chart.

(a) What was Jack's highest temperature?



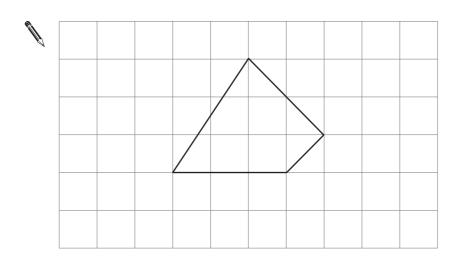
1 mark

(b) On 16th October, Jack's temperature was 36.7°CMark this point on the graph.

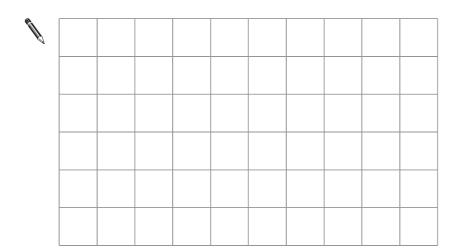
Molly asked the pupils in her class how many pets they had.

She recorded her results on a pie chart.

(a) What percentage of pupils had only 1 pet?


(b) There are 20 pupils in the class.

How many pupils had **0 pets**?


16 (a) The shape on the square grid below has exactly one right angle.

Mark the right angle on the shape.

1 mark

(b) Draw a shape on the square grid below that has **exactly two right angles**.

The rule for this sequence is to add the same number each time.

Use this rule to write the missing numbers in the sequence.

3

19

1 mark

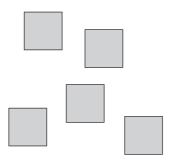
18

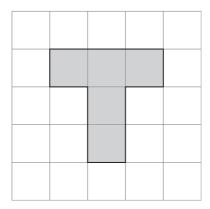
Here is an equation.

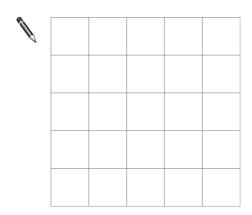
$$x + 30 = 100$$

Raj says that x = 130

Is he correct?




Explain your answer.


You can make patterns on square grids using 5 square tiles.

This pattern has **one** line of symmetry.

Use **5** square tiles to draw a pattern on the grid below that has **more than one** line of symmetry.

Jack weighs himself.

44.8kg

Then Jack weighs himself together with his dog.

60.4kg

How much does the dog weigh?

kg