2016 national curriculum assessments

Key stage 2

2016 teacher assessment exemplification: end of key stage 2

Mathematics

Working at the expected standard

Revised March 2016

Standards
\& Testing
Agency

Updated version March 2016

Updates reflect the information contained in Clarification: key stage 1 and 2 teacher assessment and moderation guidance, published on 8 March 2016, at www.gov.uk/sta.

If you are already familiar with this guidance, you do not need to re-read it but should refer to the updated sections below:

- use of the exemplification materials - new section
- note added referring to the TA frameworks on page 4

Contents

2016 teacher assessment exemplification: end of key stage 2 3
Use of exemplification materials 3
Interim teacher assessment framework at the end of key stage 2: mathematics
Exemplification 5

2016 teacher assessment exemplification: end of key stage 2

Key stage 2 (KS2) mathematics teacher assessment (TA), using the interim teacher assessment frameworks, is statutory for 2016.

This document contains material that exemplifies all of the statements within the KS2 interim TA framework for 'working at the expected standard'.

Use of the exemplification materials

- Schools must use the interim TA frameworks to reach their TA judgements.
- If teachers are confident in their judgements, they do not need to refer to the exemplification materials. The exemplification materials are there to help teachers make their judgements where they want additional guidance.
- The judgement as to whether a pupil meets a statement is made across a collection of evidence and not on individual pieces.
- This document consists of pieces of work drawn from different pupils.

Note: you must also refer to the 'Interim teacher assessment frameworks at the end of key stage 2^{\prime} on GOV.UK as they have not been fully duplicated here.

Interim teacher assessment framework at the end of key stage 2: mathematics

Working at the expected standard

- The pupil can demonstrate an understanding of place value, including large numbers and decimals (e.g. what is the value of the ' 7 ' in 276,541?; find the difference between the largest and smallest whole numbers that can be made from using three digits; $8.09=8+9 / ? ; 28.13=28+\square+0.03$).
- The pupil can calculate mentally, using efficient strategies such as manipulating expressions using commutative and distributive properties to simplify the calculation (e.g. $53-82+47=53+47-82=100-82=18$; $20 \times 7 \times 5=20 \times 5 \times 7=100 \times 7=700 ; 53 \div 7+3 \div 7=(53+3) \div 7=56 \div 7=8)$.
- The pupil can use formal methods to solve multi-step problems (e.g. find the change from $£ 20$ for three items that cost $£ 1.24, £ 7.92$ and $£ 2.55$; a roll of material is 6 m long: how much is left when 5 pieces of 1.15 m are cut from the roll?; a bottle of drink is 1.5 litres, how many cups of 175 ml can be filled from the bottle, and how much drink is left?).
- The pupil can recognise the relationship between fractions, decimals and percentages and can express them as equivalent quantities (e.g. one piece of cake that has been cut into 5 equal slices can be expressed as $1 / 5$ or 0.2 or 20% of the whole cake).
- The pupil can calculate using fractions, decimals or percentages (e.g. knowing that 7 divided by 21 is the same as $7 / 21$ and that this is equal to $1 / 3 ; 15 \%$ of $60 ; 11 / 2+3 / 4$; $7 / 9$ of $108 ; 0.8 \times 70$).
- The pupil can substitute values into a simple formula to solve problems (e.g. perimeter of a rectangle or area of a triangle).
- The pupil can calculate with measures (e.g. calculate length of a bus journey given start and end times; convert 0.05 km into m and then into cm).
- The pupil can use mathematical reasoning to find missing angles (e.g. the missing angle in an isosceles triangle when one of the angles is given; the missing angle in a more complex diagram using knowledge about angles at a point and vertically opposite angles).

Statement

The pupil can demonstrate an understanding of place value, including large numbers and decimals (e.g. what is the value of the ' 7 ' in 276, 541?; find the difference between the largest and smallest whole numbers that can be made from using 3 given digits; $8.09=8+9 / ? ; 28.13=28+?+0.03)$.

Context

The pupil was given 7 questions and was asked to identify which of the underlined digits had the larger value. The pupil successfully interpreted the value of the digit by looking at the position of the number.

Statement

The pupil can calculate mentally, using efficient strategies such as manipulating expressions, using commutative and distributive properties to simplify the calculation (e.g. $53-82+47=53+47-82=100-82=18$; $20 \times 7 \times 5=20 \times 5 \times 7=100 \times 7=700 ; 53 \div 7+3 \div 7=(53+3) \div 7=56 \div 7=8)$.

Context

Pupils sort given calculations to determine which could be done mentally, which required some notes and which needed a written method.

In pairs, the pupils were asked to sort the calculations into methods they would use to carry them out. They discussed how they would undertake each calculation. After sorting their calculations, they recorded the method they used underneath each calculation.

Statement

The pupil can calculate mentally, using efficient strategies such as manipulating expressions, using commutative and distributive properties to simplify the calculation (e.g. $53-82+47=53+47-82=100-82=18$; $20 \times 7 \times 5=20 \times 5 \times 7=100 \times 7=700 ; 53 \div 7+3 \div 7=(53+3) \div 7=56 \div 7=8)$.

$$
\begin{aligned}
& 2 \times 4=50 \times 4 \\
= & 200
\end{aligned}
$$

You are able to do this because 62×4 equals to 248 and if you take array 12×4, which is 48 , it is equivalent to 50×4, which is 200 .

I multiplied 15 by 2 because of was easier to do that, then I multiplied 30 by 7 to reach the overall answer.
3. $81-39=42$

I found if easier to rise 39 up by 2, then add 2 to my answer at the end, as I traded to 2 of first, which led me to my curswer 42.
4. $1094+906=2000$

I worked out this equation by mentally working out how much more I need to add on to 10 a 4 , because I knew 906 was round about the answer, therefore et resulted as 2000 .
$5 \cdot 108 \div 4=302$
In this equation, I used my knowledge of meltipicication and place value to help me reach my answer of 302; I thought * about how many traces 4 would go who 1200 and how many times of would go in 8, after I added then up to find my answer.

Context

The pupil was asked to carry out a number of mental calculations that drew on the properties and rules of arithmetic. They were asked to explain the methods they used. The pupil has demonstrated the ability to apply commutative properties for addition and multiplication and adjusted the order of the operations to simplify the calculation.

The pupil can use formal methods to solve multi-step problems (e.g. find the change from $£ 20$ for three items that cost $£ 1.24, £ 7.92$ and $£ 2.55$; a roll of material is 6 m long: how much is left when 5 pieces of 1.15 m are cut from the roll?; a bottle of drink is 1.5 litres, how many cups of 175 ml can be filled from the bottle, and how much drink is left?).

6. A full bottle of squash holds 750 millilitres. To make a jug of squash, you need to add 150 ml of squash to each jug. How many bottles of squash will I need to buy in order to make 20 jugs of squash?

You will need 4 bottles of juice to make

- Next Step:

Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Chen's parcel. How much heavier is Megan's parcel than Sam's parcel?

Context

The pupil was given problems to solve, involving the use of formal written methods of calculation in different contexts.
The pupil demonstrated that they could use the formal written methods of calculation when solving problems that require such methods. They also show that they are confident in switching between mental and written methods, showing that they are beginning to recognise when a mental method or a written method is a more appropriate method to use.

The pupil can use formal methods to solve multi-step problems (e.g. find the change from $£ 20$ for three items that cost $£ 1.24, £ 7.92$ and $£ 2.55$; a roll of material is 6 m long: how much is left when 5 pieces of 1.15 m are cut from the roll?; a bottle of drink is 1.5 litres, how many cups of 175 ml can be filled from the bottle, and how much drink is left?).

A website sells party outfits at the following prices in these places:

Website UK	$£ 27.50 \$ 41.00$
Website US	$\$ 45.00 \$ 43.00$
Website Europe	$40 € \$ 43.0$

Using the information below, calculate the cost of seven party outfits bought at the cheapest price.
How much would you save, compared to buying at the most expensive price?

Context

The pupils were asked to determine whether using the internet to purchase goods in different currencies was a good way to save money.

The pupils used and interpreted conversion graphs to find the relative costs of goods in Dollars, Euros and Pounds. They demonstrated an ability to use formal methods of calculation when working out costs. They compared the cost of the goods in one currency in order to find the cheapest way to purchase them online.

Statement

The pupil can recognise the relationship between fractions, decimals and percentages and can express them as equivalent quantities (e.g. one piece of cake that has been cut into 5 equal slices can be expressed as $1 / 5$ or 0.2 or 20% of the whole cake).

LO: I am learning to apply my knowledge of fractions, decimals and percentages.

Complete the table below showing the equivalent fractions, decimals and percentages.

Fraction	Decimal	Percentages	
$14 / 25$	$1 / 2$	0.5	50%
14150	$68 / 100$	0.68	68%
	$95 / 100$	0.95	95%
$34 / 100$	0.34	34%	
$33 / 100$	0.33	33%	

Context

The pupil was given a table to complete, which asked them to convert between fractions, decimals and percentages. The pupil showed an understanding of the relationship between fractions, decimals and percentages and could express each in its equivalent form. The pupil could also simplify fractions, as demonstrated by the fractions written at the side of the table.

Statement

The pupil can recognise the relationship between fractions, decimals and percentages and can express them as equivalent quantities (e.g. one piece of cake that has been cut into 5 equal slices can be expressed as $1 / 5$ or 0.2 or 20% of the whole cake).

Place the following fractions, decimals and percentages on the number line. $0.30,1 / 4,40 \%, 0.75,10 / 20$ $25 \% 40 \% 75 \% .50 \%$

Context

The pupil was asked to convert tenths along a number line into a variety of fractions, percentages and decimals. The pupil identified tenths on a zero to one number line by folding a strip of paper into 10 . They then recorded the fractions along the number line and offered an explanation of how they carried out the conversion process. They demonstrated an understanding of the importance of the ten and tenths in the relationships between the equivalent forms.

Statement

The pupil can calculate using fractions, decimals or percentages (e.g. knowing that 7 divided by 21 is the same as $7 / 21$ and that this is equal to $1 / 3 ; 15 \%$ of $60 ; 11 / 2+3 / 4 ; 7 / 9$ of $108 ; 0.8 \times 70$).

Tom says to Lucy, 'Last month I saved 0.25 of my pocket money and this month I saved $2 / 5$ of my pocket money, so altogether live saved 60% of my pocket money.' Is what Tom says true or false? Explain your decision below.

The answer is false because 0.25 ghis pocket money is 25% and $3 / 5 \mathrm{ghis}$ polder money is $40 \% .5025 \%+40 \%=65 \%$ and not 60%. I know this because I convotiod them int os pearnags to help. This is not the only answer there is antre answer which is 32.5%. You can att this answer because 2 month would be 65000 or 65% out e 200%. So I had to halve the perantage cut g 200% to get whatist would be out g 100%.

Context

The pupil interpreted a problem where the information is given in a fraction, decimal and percentage forms.
The pupil demonstrated that they can interpret, calculate and use fractions, decimals and percentages to determine whether a statement is true or false. They described how they arrived at their decision in order to justify their approach.

Statement
The pupil can calculate using fractions, decimals or percentages (egg. knowing that 7 divided by 21 is the same as $7 / 21$ and that this is equal to $1 / 3 ; 15 \%$ of $60 ; 11 / 2+3 / 4 ; 7 / 9$ of $108 ; 0.8 \times 70$).

Context
The pupil started with a mass of 2.4 kg and described this quantity in terms of other quantities.
The pupil demonstrated an understanding of how fractions, decimals and percentages can be used to show how quantities can be scaled up or down in order to give a required quantity and convert between units of mass as necessary.

The pupil can substitute values into a simple formula to solve problems (e.g. perimeter of a rectangle or area of a triangle).

Substitute values into simple formula to solve problems.

1 would like to put bark chippings down on this
area of the playground.
Could you calculate the area to find out how much I need?

Area of a rectangle $=L \times w$
Area of a triangle $=\frac{b \times h}{2}$
Rectangle

$$
5 m \times 7 m=35 m^{2}
$$

Triangle

$$
\begin{aligned}
& 7 m \times 3 m=21 m^{2} \\
& 21 m^{2} \div 2=10.5 m^{2}
\end{aligned}
$$

$$
\begin{array}{r}
35 \\
+\frac{10.5}{45.5 \mathrm{~m}^{2}} \\
\hline
\end{array}
$$

The total areais $45.5 \mathrm{~m}^{2}$

Context
The pupil is set the problem of calculating the area of bark chippings needed to cover an area of ground. The pupil demonstrated that they could substitute values into the formulae for the area of a rectangle and a triangle in order to solve the problem.

Statement
The pupil can substitute values into a simple formula to solve problems (e.g. perimeter of a rectangle or area of a triangle).

$$
\begin{aligned}
& \text { Cosines to folverheit } \\
& C \times 1.8+32=F \\
& 30^{\circ} \mathrm{C} \\
& 30 \times 1.8=54 \\
& \begin{array}{r}
54 \\
+\frac{32}{86}
\end{array} 30^{\circ} \times 1.8+32=86^{\circ} \mathrm{F} \\
& 86^{\circ} \mathrm{F} \\
& \begin{array}{l}
40^{\circ} \mathrm{C} \\
40 \times 1.8=72 \\
+\frac{72}{\frac{32}{104}}
\end{array} 4^{40^{\circ} \mathrm{C} \times 1.8+32=104^{\circ}} \\
& 104^{\circ} \mathrm{F} \\
& 12^{\circ} \mathrm{C} \quad \quad 12^{\circ} \mathrm{C} \times 1.8+32=53.6 \mathrm{~F} \\
& 12 \times 1.8=21.6 \\
& \begin{array}{l}
+32 . \\
+\frac{21}{51.6} \\
\hline 53.6{ }^{\circ} \mathrm{F}
\end{array}
\end{aligned}
$$

Context
The pupil was asked to use a formula when converting temperatures from Centigrade to Fahrenheit. The pupil demonstrated that they could use the formula to convert temperatures expressed in C to temperatures in F. They carried out systematically as a two-step calculation.

The pupil can calculate with measures (e.g. calculate length of a bus journey given start and end times; convert 0.05 km into m and then into cm).

Liam hires a bike. He has to return it by 3 pm . The time is $2: 25 \mathrm{pm}$. How many minutes has he got left?
Liam has 35 mennuntes lect:

A train leaves a station at 16:54. It stops at the first station at 17:23. How long did it take to get to the first stop?

It took 29 minutes to get to the first

Seb has to see the doctor at 10:05 am. He gets to the doctor's surgery at 9:52 am. How many minutes early is he?

Ser was 13 minutes early
A film starts at $6: 45 \mathrm{pm}$. It lasts 2 hours and 35 minutes. What time will the film finish?
Holly takes half an hour to walk from home to school. She arrives at school at $8: 25 \mathrm{am}$. At what time did she leave home?

240
\times
1440
140

Context

The pupil was asked to solve a number of time-related problems involving calculations of time intervals. The pupil demonstrated that they could read and interpret time and could also partition an interval of time to make complements to 60 minutes or one hour. The pupil was asked a supplementary question, motivating the pupil to find how many minutes there are in a day and the number of hours in a year, using formal methods of multiplication to do so.

Statement

The pupil can calculate with measures (e.g. calculate length of a bus journey given start and end times; convert 0.05 km into m and then into cm).

The ingredients listed in a fruit salad recipe are as follows: 30% apple, 35% orange, 20% banana, 10% strawberry and the rest pineapple.
List the total mass of each fruit, in g , in a 0.75 kg fruit salad?

Context

The pupil was given the ingredients for a fresh fruit salad in percentages and asked to solve a problem involving metric measures for weight. The pupil was able to calculate the quantities involved using formal and informal methods of calculations.

Statement

The pupil can use mathematical reasoning to find missing angles (e.g. the missing angle in an isosceles triangle when one of the angles is given; the missing angle in a more complex diagram using knowledge about angles at a point and vertically opposite angles).

1. $A B C$ is an isosceles triangle in which $A B=A C$ Find $\angle A C B$ and $\angle A B C$

2. $B E C$ is a scalene triangle. Find $\angle A B E$ and

find missing angles in more complex-tianinams

$$
\begin{aligned}
& \angle A B C=115^{\circ} \\
& \angle D A B=65^{\circ} \\
& \angle C D A=115^{\circ} \\
& \angle E D C=65^{\circ} \\
& \angle B C D=65^{\circ}
\end{aligned}
$$

Opposite angles are equal

How do you know?
Opposite angles in a parallogram - ${ }^{18}$ are equal. Angles on a straight line 085° equal 180°. I took 95° a nay from ox $x^{7} b^{\circ} 5^{\circ}$ 180° as $\angle A B C$ is a straight line - 85° Because the sum of angles in a 895° triangle is 180°, I added 89° and 40° and the took it away from 180°.

How do you know?
Vertically opposite angles are $+\begin{array}{cc}50^{\circ} & -360^{\circ} \\ \frac{100}{\circ} & -\frac{100^{\circ}}{260^{\circ}}\end{array}$ equal. I added 50° and 50° together to get 100°. Then I $260 \div 2=130$ took it away from 360°
as the sum of angles around
a point is 360° Then I divided
 it by two because the angles check my answer. I acted "them together.

BCD is an equilateral triangle.
$\angle A B C=80^{\circ} \quad \angle B C D=60^{\circ}$
$\angle C D B=60^{\circ} \angle D B C=60^{\circ} \angle D B E=40^{\circ}$

How do you know? $\angle A B E$ is on a straight line There is 180° on a straight line
 50 I would take 80 away from a, 180°, which is 100°. I know that
in an equilateral triangle each angle is 60°. If on the straight line the two angles are 80°
and 60°, the other angle and 60°, the other angle must be 40°.

Context

The pupil was asked to find the size of missing angles in a variety of shapes, including different types of triangles and a parallelogram.
The pupil demonstrated that they understood how to name and read an angle, using three letters and the angle symbol. They applied their reasoning to find missing angles in the diagrams and recognised when opposite angles were equal. They used the property that the angles of a triangle equal 180° and are beginning to see that the angles between parallel lines have particular properties.

2016 teacher assessment exemplification: end of key stage 2 mathematics PDF version product code: STA/16/7515/e ISBN: 978-1-78644-105-8

For more copies

Additional printed copies of this booklet are not available. It can be downloaded from www.gov.uk/government/publications

© Crown copyright and Crown information 2016

Re-use of Crown copyright and Crown information in test materials

Subject to the exceptions listed below, the test materials on this website are Crown copyright or Crown information and you may re-use them (not including logos) free of charge in any format or medium in accordance with the terms of the Open Government Licence v3.0 which can be found on the National Archives website and accessed via the following link: www.nationalarchives.gov.uk/doc/open-government-licence When you use this information under the Open Government Licence v3.0, you should include the following attribution: 'Contains public sector information licensed under the Open Government Licence v3.0' and where possible provide a link to the licence.

If you have any queries regarding these exemplification materials contact the national curriculum assessments helpline on 03003033013 or email assessments@education.gov.uk

