OCR

A Level

A Level Mathematics

Pearson's Correlation

Coefficient (Answers)

Name:

M M E Mathsmadeeasy.co.uk

Total Marks:

1) Estimate the correlation coefficient of the data shown in each of the following graphs.

[1 mark for each correct answer in acceptable range- 3 max]

Has no observable correlation.

Acceptable range:

$$
-0.1 \leq \rho \leq 0.1
$$

Actual

$$
\rho=-0.08
$$

Has negative correlation, with some spread.

Acceptable range:

$$
-0.8 \leq \rho \leq-0.6
$$

Actual:

$$
\rho=-0.71
$$

Negative correlation, with spread, few observations.

Acceptable range:

$$
-0.75 \leq \rho \leq-0.55
$$

Actual:

$$
\rho=-0.69
$$

2) For each of the following determine whether $\boldsymbol{H}_{\mathbf{0}}: \boldsymbol{\rho}=\mathbf{0}$ can be rejected or accepted and at what level of significance- either $5,1,0.1 \%$.
i)

ρ	n	P-value
0.73	-	0.00169
0.86	-	0.0495
0.977	12	-

[1 mark]
i) $\quad H_{0}$ can be rejected in favour of the alternate hypothesis at $5 \%, 1 \%$ and $0,1 \%$ level of significance. As p $<0.01 \%$.
[1 mark]
ii) $\quad H_{0}$ can be rejected in favour of the alternate hypothesis at 5% level of significance. As p $<5 \%$.
[1 mark]
Calculate the t -critical value given by

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}
$$

[1 mark]

$$
\begin{gathered}
t=0.977 \sqrt{\frac{12-2}{1-0.977^{2}}} \\
t=14.48862964
\end{gathered}
$$

[1 mark]

$$
v-2 \text { degrees of freedom }=10
$$

[1 mark for each correct critical value- 3 max]
If obs $t>$ crit t then reject H_{0}.

$$
\begin{gathered}
t_{10}(0.025)=2.228138852 \\
t_{10}(0.005)=3.169272673 \\
t_{10}(0.00005)=4.586893859
\end{gathered}
$$

3) The results of a machine that learns from its mistakes are shown in the table below.

Number of Experiments	10	20	30	40	50	60	70	80	90	100
Accuracy	0	3	9	15	23	37	52	94	99	100

i) Calculate Pearson's correlation coefficient.

Let x be Number of Experiments and y, Accuracy.
[1 mark]

$$
\begin{gathered}
\Sigma x=550 \\
\bar{x}=55 \\
\Sigma(x-\bar{x})^{2}=8250
\end{gathered}
$$

[1 mark]

$$
\begin{gathered}
\Sigma y=432 \\
\bar{y}=432.2 \\
\Sigma(y-\bar{y})^{2}=14891.6
\end{gathered}
$$

[1 mark]

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}
$$

[1 mark]

$$
\begin{gathered}
r=\frac{10610}{\sqrt{(8250)(14891.6)}} \\
r=0.9572
\end{gathered}
$$

ii) Write null and alternate hypotheses regarding the significant of the calculated coefficient.
[1 mark for each hypothesis - 2 max]

$$
\begin{gathered}
H_{0}: \rho=0 \\
H_{1}: \rho \neq 0 \\
\therefore \text { two }- \text { tailed test }
\end{gathered}
$$

iii) Carry out a t-test at the 5\% significance level. Use this to reject or accept the null hypothesis.
[1 mark]
Calculate the t-critical value given by

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}
$$

[1 mark]

$$
\begin{gathered}
t=0.9572 \sqrt{\frac{10-2}{1-0.9572^{2}}} \\
t=9.354
\end{gathered}
$$

[1 mark]

$$
\begin{gathered}
v-2 \text { degrees of freedom } \\
\therefore t \text { crit }=t_{8}(0.05)=2.306004135
\end{gathered}
$$

[1 mark]
As obs $t \gg t$ crit we can reject the null hypothesis in favour of the alternate hypothesis. i.e. there is strong evidence to suggest a correlation.
iv) Plot a suitable graph of the data.
[1 mark- a scatter plot]

v) Without calculation state the effect, with a reason, that removing the first two pairs $(10,0)$ and $(20,3)$ would have.
[1 mark]
It would increase the value of the correlation coefficient as the points would be "straighter".
vi) Assuming the Accuracy increases linearly between intervals calculate the Accuracy after 66 experiments.
[1 mark]
Using difference in y-difference in x we can gain an understanding that in the interval 60 to 70 , for every experiment the accuracy increases by 1.5.
[1 mark]
Therefore after 66 experiments the Accuracy is 46.
vii) Explain why Number of Experiments is the independent variable.
[1 mark for any of following - 1 max]

- Not random
- Not affected by y
- Regular intervals
- Not being measured
- Not dependent on anything

