

 Kevin has the results of 34 people's favourite chocolate. He has represented it in a graph and calculated the mode as milk, the median as dark, the range as 13, and the mean as 6.8.

Critique the following:

	i)	Kevin's choice of graph.	[1]
	ii)	His summary statistics.	[4]
iii	iii)	His decision to remove <i>Fruit</i> because he considered it to be outlier.	[+]
	-		[1]

2) The number of spots on insects at a nature park was recorded for one day in July. The summary table of this experiment is shown in the grouped frequency table.

Number of Spots (s)	$0 < s \le 2$	$2 < s \le 4$	$4 < s \le 6$	$6 < s \le 8$	$8 < s \le 10$
Frequency	3	8	13	14	6

- i) Calculate the mean and range number of spots. [4]
 ii) Draw an appropriate chart for the data, and use this chart to obtain an [4]
 estimate for the median
- Salaries of 30 people at a company are normally distributed, with a mean of 25,000 and standard deviation of 2000. For each of the following scenarios state what will happen if:
 - i) One person, with a salary 10^2 larger than the mean is added. [2]
 - ii) One person, with a salary of 10^0 larger than the mean is added. [2]

4) The volume of *CO*2 a machine produces was measured 900 times in June. These volumes are displayed in the cumulative frequency graph below.

i) Estimate the median and interquartile range of the data

[1 mark]

An estimate of the median lies around 16.

[1 mark]

An estimate of the interquartile range is 18(75%) - 13(25%) = 5.

ii) Identify the outliers, if there are any.

The interquartile range is 5. Estimates of outliers are $1.5 \times interquartile range$ above the upper quartile and similarly, below the lower quartile.

[1 mark]

$$upQ + 1.5(IQR) = 18 + 7.5 = 22.5$$

[1 mark]

 \therefore all values above 22.5 could be considered outliers, of which there are about 125 readings.

[1 mark]

$$lowQ - 1.5(IQR) = 13 - 7.5 = 6.5$$

[1 mark]

 \therefore all values below 6.5 are outliers, about 20 readings.

iii) Discuss the whether these outliers should be removed.

[1 mark]

There is no reason to remove them unless the recording machine was faulty. Knowing the upper limits of these emissions might prove useful.

iv) On the next six occasions, the machine reported negative values. Discuss how adding these into the data would alter the graph.

[1 mark]

No. These outliers are because of an error in the machine, or the person recording the reading. You cannot have a negative volume.