AQA, Edexcel, OCR

A Level

A Level Mathematics

Understand and use the standard small angle approximations of sine, cosine and tangent

Name:

Mathsmadeeasy.co.uk

Total Marks:

E2- Understand and use the standard small angle approximations of sine, cosine and tangent - Questions AQA, Edexcel, OCR

2)	Give the small angle approximations for sine, cosine and tangent of:		[6]
	i)	5°	
	ii)	10°	
3)	Generate a table of the small angle approximations for sine, cosine and tangent of: $0, \frac{\pi}{12}, \frac{\pi}{10}, \frac{\pi}{8}, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi$		[3]
	i)	Then add an additional column and complete the actual values.	[3]
	ii)	Plot the actual values against the approximations on a four quadrant axes	[4]
		ranging from -5 to 5 for Approximation (x-axis) and Actual (y-axis).	
	iii)	Calculate the mean absolute percentage error for sine, cosine and tangent.	[3]
4)	A function machine takes two small angle approximations and multiplies them together.		[4]
	Jack puts in $sin(9^o)$ and $cos(9^o)$. Jill puts in $sin(8^o)$ and $tan(11^o)$. Show who ends up with		
	the large	est answer. Do not use a calculator. You may work using two decimal places.	
5)	Approximate the value of $A = \frac{\pi}{12}$ with the formulas:		
	i)	$\cos(2A)$	[2]
	ii)	$\sin(2A)$	[2]
	iii)	tan(2A)	[2]
	iv)	sin(A)cos(A)tan(A)	[2]
6)	Your manager wants to save time but be accurate. You are allowed a 2% error in your		
	approximations otherwise you must find the precise value. For $sin(x)$:		
	i)	What integer angles, in degrees, would you not be allowed to approximate?	[2]
		Write your answer as an inequality.	
	ii)	You are required to work out all the integer values of $\sin(x)$ from 1° to 100°	
		Approximations take you 5 seconds, calculations take you 15 seconds, how long	[1]
		will this task take in total?	

If you were offered the swap to cos(x) or tan(x), would you? And why?

iii)

[2]