

C5- Understand and use double angle formulae; use of formulae for $sin(A \pm B)$, $cos(A \pm B)$, $tan(A \pm B)$; understand geometrical proofs of these formulae-Questions

AQA, Edexcel, OCR

1) For the following questions α , β and δ are all acute angles.

$$\sin(\alpha) = \frac{3}{5}$$
 $\cos(\beta) = \frac{2}{3}$ $\tan(\delta) = \frac{1}{4}$

Find exact values for:

- (a) $\sin(\alpha + \beta)$ (b) $\sin(\alpha \beta)$ (c) $\cos(\alpha + \beta)$ (d) $\cos(\alpha + \delta)$
- (e) $\cos(\beta \delta)$ (f) $\tan(\alpha \beta)$ (g) $\tan(\alpha + \delta)$ (h) $\tan(\beta + \delta)$

Find exact values for:

- (i) $\sin(2\alpha)$ (j) $\cos(2\alpha)$ (k) $\tan(2\alpha)$ (l) $\sin(2\beta)$ (m) $\cos(2\beta)$ (n) $\tan(2\beta)$ (o) $\sec(2\delta)$ (p) $\csc(2\delta)$
- 2) Demonstrate geometric proof of the double angle formula for

i)	sine; and	[5]
ii)	use this solution to prove the respective rule for cosine.	[4]

- 3) State the formula for sin(A + B), cos(A + B) and use these to write the formula [3] for tan(A + B).
- 4) Demonstrate, using your knowledge of trigonometric identities, that the following is true [3]

$$cos 2A = 1 - 2 sin 2A$$

5) Show that
$$\cos(3x) = 4\cos^3(x) - 3\cos(x)$$
 [2]

6) Simplify the following

$$\frac{\cos(2x)}{\sin(x) + \cos(x)}$$

[8]

[8]

[2]