AQA, Edexcel, OCR

A Level

A Level Mathematics

Understand and use double

 angle formulaeName:

M

Total Marks:

C5- Understand and use double angle formulae; use of formulae for $\sin (A \pm B), \cos (A \pm B), \tan (A \pm$ B); understand geometrical proofs of these formulae- Answers
AQA, Edexcel, OCR

1) For the following questions α, β and δ are all acute angles.
$\operatorname{Sin}(\alpha)=\frac{3}{5}$
$\cos (\beta)=\frac{2}{3}$
$\tan (\delta)=\frac{1}{4}$

The answers for the following questions are applications of the following formula.

$$
\begin{gather*}
\sin (A \pm B)=\sin A \cos B \pm \sin B \cos A \tag{1}\\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \tag{2}\\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \tag{3}
\end{gather*}
$$

You also need to recall $\operatorname{cosec}(x)=\frac{1}{\sin x} ; \sec (x)=\frac{1}{\cos (x)}$; the double angle formulas are just applications of (1), (2) and (3), where B is replaced by another A.
[1 mark for each correct answer- 8 max]
Find exact values for:
(a) $\sin (\alpha+\beta)$
(b) $\sin (\alpha-\beta)$
(c) $\cos (\alpha+\beta)$
(d) $\cos (\alpha+\delta)$
$\frac{6+4 \sqrt{5}}{15}$ $\frac{6-4 \sqrt{5}}{15}$
$\frac{8-3 \sqrt{5}}{15}$
$\frac{13 \sqrt{17}}{85}$
(e) $\cos (\beta-\delta)$
(f) $\tan (\alpha-\beta)$
(g) $\tan (\alpha+\delta)$
(h) $\tan (\beta+\delta)$
$\frac{\sqrt{85}+8 \sqrt{ } 17}{51}$
$\frac{6-4 \sqrt{5}}{8+3 \sqrt{5}}$
$\frac{6+4 \sqrt{5}}{8-3 \sqrt{5}}$
$\frac{36+34 \sqrt{5}}{59}$
[1 mark for each correct answer- 8 max]
Find exact values for:
(i) $\sin (2 \alpha)$
(j) $\cos (2 \alpha)$
(k) $\tan (2 \alpha)$
(1) $\sin (2 \beta)$
$\frac{24}{25}$
$\frac{7}{25}$
$\frac{24}{7}$
$\frac{4 \sqrt{5}}{9}$

$\frac{-1}{9}$
$\frac{\mathrm{~m}}{9}$
$\cos (2 \beta)$

(n) $\tan (2 \beta)$
$-4 \sqrt{ } 5$

$(\mathrm{p}) \operatorname{cosec}(2 \delta)$
$\frac{17}{8}$
2) Demonstrate geometric proof of the double angle formula for sine and cosine.

For sine, we know the double angle formula is

$$
\sin (x+y)=\sin x \cos y+\cos x \sin y
$$

[1 mark for drawing]
We can demonstrate this geometrically by stacking two right-angle triangles on top of each other. The two triangles Triangle ACD, where $A D$ is length 1 and Triangle ABC are shown below. There is also a triangle AFD and the side FD is oppposite angles x and y. If we
 establish the length of FD we can prove the formula.

At the moment we can say

$$
\begin{equation*}
\sin (x+y)=D F \tag{1}
\end{equation*}
$$

Writing DF as DE and EF gives
1

$$
\sin (x+y)=D E+E F
$$ and writing EF as CB (same length as BCEF) is rectangle.

$$
\sin (x+y)=D E+C B
$$

[1 mark]
Establish some of the unknown lengths of the sides of the polygon.

$$
\begin{gathered}
\sin (x)=\frac{o p p}{h y p}=\frac{C D}{1} \\
\Rightarrow C D=\sin (x)
\end{gathered}
$$

And similarly, we know that AC can be written as

$$
\begin{gather*}
\cos (x)=\frac{a d j}{h y p}=\frac{A C}{1} \tag{2}\\
\Rightarrow A C=\cos x
\end{gather*}
$$

[1 mark]
We can now use this to establish length CB

$$
\begin{aligned}
\sin (y) & =\frac{o p p}{h y p}=\frac{C B}{\cos (x)} \\
\Rightarrow C B & =\cos (x) \sin (y)
\end{aligned}
$$

Angle BCE we know is the same size as angle y (CE is parallel to AB - alternate angles). Therefore we know

$$
\begin{gathered}
\angle E C D=90-y \\
\angle C E D=90 \\
\Rightarrow \angle E D C=y
\end{gathered}
$$

as the angles in the triangle CDE must add up to 180 .

$$
\cos (y)=\frac{a d j}{h y p}=\frac{D E}{C D}=\frac{D E}{\sin (x)}
$$

$$
\Rightarrow D E=\sin (x) \cos (y)
$$

[1 mark]
Inserting (2) and (3) into (1) gives

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

For cosine, we know the double angle formula is $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$.

$$
\begin{gather*}
\cos (x+y)=\frac{a d h}{h y p}=\frac{A F}{1} \\
\cos (x+y)=A F \\
\cos (x+y)=A F=A B-F B \tag{5}
\end{gather*}
$$

[1 mark]
Using equation number (2) we can establish that

$$
\begin{gathered}
\cos (y)=\frac{a d j}{h y p}=\frac{A B}{A C}=\frac{A B}{\cos (x)} \\
\Rightarrow A B=\cos (x) \cos (y)
\end{gathered}
$$

[1 mark]
To obtain the length of FB, we can obtain the length of EC, and they are the same because BCEF is a rectangle.

$$
\begin{gathered}
\angle E D C=y \\
D C=\sin (x)
\end{gathered}
$$

which we previously showed.

$$
\begin{aligned}
& \sin (y)=\frac{o p p}{h y p}=\frac{E C}{\sin (x)} \\
\Rightarrow & E C=\sin (x) \sin (y)=F B
\end{aligned}
$$

[1 mark]
Putting (5) and (6) into (4) gives

$$
\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
$$

3) State the formula for $\sin (A+B), \cos (A+B)$ and use these to write the formula for $\tan (A+B)$.

$$
\begin{gathered}
\sin (A+B)=\sin A \cos B+\sin B \cos A \\
\cos (A+B)=\cos A \cos B-\sin A \sin B
\end{gathered}
$$

We know that $\tan (x)=\frac{\sin (x)}{\cos (x)}$ and that the same relationship is true for the double angle/additional formula.

$$
\begin{gathered}
\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)} \\
\tan (A+B)=\frac{\sin A \cos B+\sin B \cos A}{\cos A \cos B-\sin A \sin B}
\end{gathered}
$$

[1 mark]
If we divide each term by $\cos A \cos B$ we get the following

$$
\tan (A+b)=\frac{\frac{\sin A \cos B}{\cos A \cos B}+\frac{\sin B \cos A}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}-\frac{\sin A \sin B}{\cos A \cos B}}
$$

Cancelling out the $\cos B$ left- hand part of the numerator allows us to write it as

$$
\tan (A+b)=\frac{\frac{\sin A}{\cos A}+\frac{\sin B \cos A}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B}-\frac{\sin A \sin B}{\cos A \cos B}}
$$

Cancelling out the $\cos A$ right- hand part of the numerator allows us to write it as

$$
\tan (A+b)=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{\frac{\cos A \cos B}{\cos A \cos B}-\frac{\sin A \sin B}{\cos A \cos B}}
$$

Cancelling out the left-hand part of the numerator allows us to write it as

$$
\tan (A+b)=\frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{1-\frac{\sin A \sin B}{\cos A \cos B}}
$$

[1 mark]
Now we have many terms with a \sin numerator and \cos denominator, meaning we can replace them with tan.

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\operatorname{tanAtan} B}
$$

4) Demonstrate using your knowledge of trigonometric identities that the following is true:

$$
\cos 2 A=1-2 \sin 2 A
$$

We know that

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

[1 mark]
so we can write that

$$
\begin{gather*}
\cos (2 A)=\cos A \cos A-\sin A \sin A \\
\cos (2 A)=\cos ^{2} A-\sin ^{2} A \tag{1}
\end{gather*}
$$

[1 mark]
We also know that

$$
1=\sin ^{2} a+\cos ^{2} a
$$

Rearranging this gives

$$
\begin{equation*}
\cos ^{2} a=1-\sin ^{2} a \tag{2}
\end{equation*}
$$

[1 mark]
Inserting (2) into (1) gives

$$
\begin{gathered}
\cos (2 A)=\left(1-\sin ^{2} a\right)-\sin ^{2} a \\
\cos (2 A)=1-2 \sin ^{2} a
\end{gathered}
$$

5) Show $\cos (3 x)=4 \cos ^{3}(x)-3 \cos (x)$

$$
\begin{aligned}
\cos (3 x) & =\cos (3 x+x) \\
& =\cos (2 x) \cos x-\sin (2 x) \sin x
\end{aligned}
$$

[1 mark]
Inserting double angle formulas for cosine and sine gives

$$
\cos (3 x)=\left(\cos ^{2} x-\sin ^{2} x\right) \cos x-2 \sin ^{2} x \cos x
$$

[1 mark]
Replacing $\sin ^{2} x$ with $1-\cos ^{2} x$

$$
\begin{gathered}
\cos (3 x)=\left(\cos ^{2} x-\left(1-\cos ^{2} x\right) \cos x-2\left(1-\cos ^{2} x\right) \cos x\right. \\
\cos (3 x)=\cos ^{3} x-\cos x+\cos ^{3} x-2 \cos x+2 \cos ^{3} x \\
\cos (3 x)=4 \cos ^{3} x-3 \cos x
\end{gathered}
$$

6) Simplify the following

$$
\frac{\cos (2 x)}{\sin (x)+\cos (x)}
$$

Using the double angle formula for $\cos (2 x)$ allows us to write

$$
\frac{\cos ^{2}(x)-\sin ^{2}(x)}{\sin (x)+\cos (x)}
$$

[1 mark]
Spotting that the numerator is the difference of two squares, means we can rewrite it as

$$
\frac{(\cos (x)-\sin (x))(\cos (x)+\sin (x))}{\sin (x)+\cos (x)}
$$

[1 mark]
And as the bracket on the right of the numerator is the same as the denominator they will cancel to give 1 , leaving us with:

$$
\cos (x)-\sin (x)
$$

