AQA, Edexcel, OCR

A Level

A Level Mathematics

Parametric Equations (Answers)

Name:

M

Total Marks:

1) Sketch the parametric curve for the following set of equations

$$
x=t^{2}, y=5 t+1, \quad-2 \leq t \leq 2
$$

[1 mark for x / y graph axes]
[1 mark for correct shape]

2) Eliminate the parameter from the following set

$$
\begin{gather*}
x=2 t^{2}+4 \tag{1}\\
y=t+1 \tag{2}
\end{gather*}
$$

[1 mark]
Rearranging (2) gives

$$
\begin{equation*}
t=y-1 \tag{3}
\end{equation*}
$$

Substituting (3) into (1)

$$
\begin{gathered}
x=2(y-1)^{2}+4 \\
=2\left(y^{2}-2 y+2\right)+4
\end{gathered}
$$

3) A curve, C, has the parametric equations

$$
x=t^{3}-6 t, \quad y=t^{2}
$$

where t is a parameter.
[1 mark for x / y graph axes]
[1 mark for correct shape]
i) Plot y against x for $-2 \leq t \leq 2, t \in \mathbb{Z}$

Point P has the value $t=1$
ii) Find the coordinates of P.

$$
\begin{gather*}
x=t^{3}-6 t \tag{2}\\
y=t^{2}
\end{gather*}
$$

[1 mark]
Substituting $t=1$ into (1) and (2) gives

$$
\begin{gathered}
x=1^{3}-6(1) \\
x=-5 \\
y=1^{2} \\
y=1 \\
\therefore P=(-5,1)
\end{gathered}
$$

A square, S, has an edge S_{1} that is tangent to C at point P.

iii) Show that the equation for this edge is $3 y+2 x+7=0$

[1 mark]

Here, we are defining a line that passes through $(-5,1)$.
[1 mark]
The gradient is given by the chain rule in the form

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}
$$

Using (2) we can define

$$
\frac{d y}{d x}=2 t
$$

Using (1) we can define

$$
\begin{aligned}
& \frac{d x}{d t}=3 t^{2}-6 \\
& \therefore \frac{d t}{d x}=\frac{1}{3 t^{2}-6} \\
& \therefore \frac{d y}{d x}=\frac{2 t}{3 t^{2}-6}
\end{aligned}
$$

[1 mark]
At this point $t=1$ so we can define the gradient of the S_{1} as

$$
m=\frac{2(1)}{3\left(1^{2}\right)-6}=-\frac{2}{3}
$$

[1 mark]
Substituting this into $y-y_{1}=m\left(x-x_{1}\right)$, with $P=(-5,1)$ gives

$$
\begin{gather*}
y-1=-\frac{2}{3}(x--5) \\
3 y-3=-2 x-10 \\
3 y+2 x+7=0 \tag{4}
\end{gather*}
$$

The same edge intersects the curve at second point, Q .

iv) What are the coordinates of this point?

[1 mark]
Intersection of two lines involves solving simultaneous equations.
Substitute (1) and (2) into (3) to give (3) in parametric form.

$$
\begin{gathered}
3 y+2 x+7=0 \\
3\left(t^{2}\right)+2\left(t^{3}-6 t\right)+7=0 \\
3 t^{2}+2 t^{3}-12 t+7=0 \\
2 t^{3}+3 t^{2}-12 t+7=0
\end{gathered}
$$

[1 mark]
Using the factor theorem, we know that $t-1$ is factor of (4).
Using polynomial long division, we get

$$
\begin{aligned}
& (t-1)\left(2 t^{2}+5 t-7\right)=0 \\
& (t-1)(2 t+7)(t-1)=0
\end{aligned}
$$

This gives us potential solutions at $t=-\frac{7}{2}$ or 1 . We know that 1 is the solution previously found (given to us) to that $t=-\frac{7}{2}$ is where Q is.
[1 mark]
Substituting this into (1) and (2)

$$
\begin{gathered}
x=\left(-\frac{7}{2}\right)^{3}-6\left(-\frac{7}{2}\right)=-\frac{343}{8}+\frac{42}{2}=-\frac{175}{8} \\
y=-\frac{7^{2}}{2}=\frac{49}{4} \\
\therefore Q=\left(-\frac{175}{8}, \frac{49}{4}\right)
\end{gathered}
$$

4) The following parametric equations

$$
\begin{align*}
& x=t^{2}-4 t \tag{1}\\
& y=t^{3}-4 t \tag{2}
\end{align*}
$$

define a curve, C, that cross the x-axis thrice.
i) One of the points, N, at which it crosses is (0,0). Find the one where $x>0$. [1 mark]
At the x -axis, $y=0$. Subbing in $\mathrm{y}=0$ into (2) gives

$$
\begin{gathered}
0=t\left(t^{2}-4 t\right) \\
t^{2}=4 \\
t= \pm 2
\end{gathered}
$$

Substituting $t=2$ into (1) gives

$$
x=2^{2}-4(2)=4-8=-4
$$

which is not $x>0$
[1 mark]
Substituting $t=-2$ into (1) gives

$$
\begin{gathered}
x=(-2)^{2}-4(-2)=4+8=12 \\
N=(12,0)
\end{gathered}
$$

From the origin to the N, a region, R, of the of the plane is enclosed by C and the x-axis.
ii) Find the area of \boldsymbol{R}.
[1 mark]
The area is given by the integral of the curve.

$$
R=\int_{0}^{12} t^{3}-4 t d x
$$

[1 mark]
However, we need the integral with respect to $d t$.

$$
R=\int_{0}^{12} t^{3}-4 t \frac{d x}{d t} d t
$$

where, differentiating (1) gives us

$$
\frac{d x}{d t}=2 t-4
$$

[1 mark]
We also need to change the limits of the integral, we know that when

$$
\begin{gathered}
x=0, t=0 \\
x=12, t=-2 \\
\therefore R=\int_{0}^{-2} t^{3}-4 t(2 t-4) d t \\
=\int_{0}^{-2} 2 t^{4}-8 t^{2}+4 t^{3}-16 t d t
\end{gathered}
$$

[1 mark]

$$
\begin{gathered}
=\left[\frac{16 t^{5}}{5}+t^{4}-\frac{8 t^{3}}{3}-8 t^{2}\right]_{0}^{-2} \\
=\left(\frac{16(-2)^{5}}{5}+(-2)^{4}-\frac{8(-2)^{3}}{3}-8(-2)^{2}\right)-\left(\frac{16(0)^{5}}{5}+0^{4}-\frac{8(0)^{3}}{3}-8(0)^{2}\right) \\
=-97 \text { square units }^{=} 97 \text { units }^{2}
\end{gathered}
$$

5) i) State the parameterisation of the of the circle $x^{2}+y^{2}=9$

Recall that $\sin ^{2} x+\cos ^{2} x=1$, therefore we can write

$$
\begin{aligned}
& x=\operatorname{asin}(t) \\
& y=\operatorname{acos}(t)
\end{aligned}
$$

[1 mark for each correctly written- 2 max]
For this example

$$
\begin{aligned}
& x=3 \sin (t) \\
& y=3 \cos (t)
\end{aligned}
$$

iii) Plot this circle and indicate the starting point of motion, S, and the direction of motion as clockwise or anticlockwise.

[1 mark]
Motion starts at $t=0$

$$
\begin{gathered}
x=3 \sin (0)=0 \\
y=3 \cos (0)=1 \\
\therefore S=(0,1)
\end{gathered}
$$

[1 mark]
Any increase in t will make it positive and the values of $a \sin (t)$ and $b \cos (t)$ will also be positive meaning, the motion will be modelling in Quadrant 1, positive, making it clockwise.

