AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C4 Vectors

Name:

M E
 Mathsmadeeasy.co.uk

Total Marks: /107

C4 - Vectors
 MEI, OCR, AQA, Edexcel

1. State whether each of the following quantities are scalars or vectors. For parts g) and h), you are given that \boldsymbol{a} and \boldsymbol{b} are vectors:
(a) $\boldsymbol{i}+2 \boldsymbol{j}$.
(b) 2 .
(c) $3 \boldsymbol{i}$.
(d) $(1,2)$.
(e) $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$.
(f) $|3 \boldsymbol{i}+2 \boldsymbol{j}|$.
(g) $\boldsymbol{a} \cdot \boldsymbol{b}$.
(h) $\boldsymbol{a}-\boldsymbol{b}$.
2. Simplify the following expressions:
(a) $\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)+\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$.
(b) $2\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$.
(c) $3 \boldsymbol{i}+2 \boldsymbol{j}+5 \boldsymbol{i}+8 \boldsymbol{j}$.
(d) $6(2 \boldsymbol{i}+\boldsymbol{j})$.
3. Evaluate the following expressions:
(a) $|\boldsymbol{i}+\boldsymbol{j}|$.
(b) $|3 \boldsymbol{i}+4 \boldsymbol{j}|$.
(c) $|2 \boldsymbol{i}+8 \boldsymbol{j}|^{2}$.
(d) $|\cos t \boldsymbol{i}+\sin t \boldsymbol{j}+\sqrt{3} \boldsymbol{k}|$.
4. Calculate each of the scalar (dot) products below. Also specify whether the vectors are orthogonal to one another or not:
(a) $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(b) $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$
(c) $\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -8 \\ 2\end{array}\right)$
(d) $\left(\begin{array}{c}-2 \\ 5 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}13 \\ 4 \\ 2\end{array}\right)$
(e) $(3 \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}) \cdot(\boldsymbol{i}+\boldsymbol{j}+\sqrt{3} \boldsymbol{k})$
5. Find the distance between the following lines and the location of the mid point between them:
(a) $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
(b) $\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
(c) $\left(\begin{array}{c}-1 \\ -4 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}8 \\ -2 \\ 1\end{array}\right)$
6. Consider the position vectors $\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{l}2 \\ 6 \\ 1\end{array}\right)$:
(a) Calculate $|\overrightarrow{A B}|$.
(b) The point C lies on the line between A and B and divides it in the ratio $2: 3$. Work out the coordinates of C.
7. Write the equation of the line through $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ in the direction $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ in:
(a) Vector form.
(b) Cartesian form.
8. Consider two points, $A=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ and $B=\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)$:
(a) Write the equation of the line through A and B in vector form.
(b) Write the equation of the line through A and B in cartesian form.
9. Write the following equations of lines in vector form:
(a) $y=2 x$.
(b) $y=3 x+1$.
(c) $\frac{x-1}{2}=\frac{y-2}{3}=z$.
10. Find the equation of the following planes in vector form:
(a) The plane through $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ with direction vectors $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$.
(b) The plane containing the origin and the points $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$.
11. Find the equation of the following planes in cartesian form:
(a) The plane through $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ with normal vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.
(b) The plane through $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ with normal vector $\left(\begin{array}{c}\frac{3}{5} \\ 0 \\ \frac{2}{5}\end{array}\right)$.
12. Challange: Find the cartesian equation of the plan containing the points $\left(\begin{array}{l}5 \\ 4 \\ 3\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}9 \\ 2 \\ 0\end{array}\right)$.
13. Find the points of intersection between the following lines/planes:
(a) The line $\boldsymbol{r}_{\mathbf{1}}=s_{1}\binom{1}{2}$ and the line $\boldsymbol{r}_{\mathbf{2}}=s_{2}\binom{1}{3}-\binom{\frac{1}{3}}{0}$.
(b) The plane $3 x+y=25$ and the line $\boldsymbol{r}=\binom{2}{1} s$.
14. Calculate the angle between the following vectors. Give you answers in degrees to two decimal places where necessary:
(a) $3 \boldsymbol{i}+2 \boldsymbol{j}$ and $3 \boldsymbol{i}$.
(b) $2 \boldsymbol{i}+7 \boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}$.
(c) $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$.
(d) $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right)$.
15. You are given that the points A, B, C all lie in a plane, where $\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ and $\overrightarrow{O C}=\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right)$.

(a) Calculate $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) Hence, or otherwise calculate the unit normal vector to the plane containing A, B and C.
(c) Find the equation of the plane in cartesian form.
(d) Does the point $\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right)$ lie on the plane?
(e) Does the point $\left(\begin{array}{l}1 \\ 1 \\ 5\end{array}\right)$ lie on the plane?
(f) Does the point $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ lie on the plane?
