

C4 - Vectors MEI, OCR, AQA, Edexcel

1. State whether each of the following quantities are scalars or vectors. For parts g) and h), you are given that \boldsymbol{a} and \boldsymbol{b} are vectors:

(a) $i + 2j$.	[1]
(b) 2.	[1]
(c) 3 <i>i</i> .	[1]
(d) $(1,2)$.	[1]
(e) $\begin{pmatrix} 1\\4\\2 \end{pmatrix}$.	[1]
(f) $ 3i + 2j $.	[1]
(g) $\boldsymbol{a} \cdot \boldsymbol{b}$.	[1]
(h) $a - b$.	[1]
Simplify the following expressions:	
(a) $\begin{pmatrix} 1\\4\\2 \end{pmatrix} + \begin{pmatrix} 1\\4\\2 \end{pmatrix}$.	[1]
(b) $2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$.	[1]
(c) $3i + 2j + 5i + 8j$.	[1]
(d) $6(2i + j)$.	[1]
Evaluate the following expressions:	
(a) $ i + j $.	[2]
(b) $ 3i + 4j $.	[2]
(c) $ 2i + 8j ^2$.	[2]
(d) $\left \cos t\mathbf{i} + \sin t\mathbf{j} + \sqrt{3}\mathbf{k}\right $.	[3]

2.

3.

4. Calculate each of the scalar (dot) products below. Also specify whether the vectors are orthogonal to one another or not:

(a)
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
 [2]
(b) $\begin{pmatrix} 1\\2\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} -1\\1\\-1 \end{pmatrix}$ [2]
(c) $\begin{pmatrix} 3\\4\\5\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\-8\\2 \end{pmatrix}$ [2]
(d) $\begin{pmatrix} -2\\5\\3\\2 \end{pmatrix} \cdot \begin{pmatrix} 13\\4\\2 \end{pmatrix}$ [2]
(e) $(3i+2j+k) \cdot (i+j+\sqrt{3}k)$ [2]

5. Find the distance between the following lines and the location of the mid point between them:

(a)
$$\begin{pmatrix} 2\\1\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ [3]
(b) $\begin{pmatrix} 4\\1\\6 \end{pmatrix}$ and $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$ [3]
(c) $\begin{pmatrix} -1\\-4\\0 \end{pmatrix}$ and $\begin{pmatrix} 8\\-2\\1 \end{pmatrix}$ [3]

6. Consider the position vectors
$$\overrightarrow{OA} = \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 2\\ 6\\ 1 \end{pmatrix}$:

- (a) Calculate $\left| \overrightarrow{AB} \right|$.
- (b) The point C lies on the line between A and B and divides it in the ratio 2 : 3. Work out the coordinates of C.

[3]

[3]

- 7. Write the equation of the line through $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ in the direction $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ in:
 - (a) Vector form.
 - (b) Cartesian form.

8. Consider two points,
$$A = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$:

- (a) Write the equation of the line through A and B in vector form.
- (b) Write the equation of the line through A and B in cartesian form.
- 9. Write the following equations of lines in vector form:
 - (a) y = 2x. [2] (b) y = 3x + 1. [2]
 - (c) $\frac{x-1}{2} = \frac{y-2}{3} = z.$ [3]
- 10. Find the equation of the following planes in *vector form*:

(a) The plane through
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 with direction vectors $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 3\\0\\0 \end{pmatrix}$. [1]

- (b) The plane containing the origin and the points $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 4\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 3\\1\\0 \end{pmatrix}$. [2]
- 11. Find the equation of the following planes in *cartesian form*:
 - (a) The plane through $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ with normal vector $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. [3]

(b) The plane through
$$\begin{pmatrix} 1\\2\\1 \end{pmatrix}$$
 with normal vector $\begin{pmatrix} \frac{3}{5}\\0\\\frac{2}{5} \end{pmatrix}$. [3]

[1]

[3]

[2]

[3]

12. *Challange:* Find the cartesian equation of the plan containing the points
$$\begin{pmatrix} 5\\4\\3 \end{pmatrix}$$
, $\begin{pmatrix} 4\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 9\\2\\0 \end{pmatrix}$. [6]

13. Find the points of intersection between the following lines/planes:

(a) The line
$$\mathbf{r_1} = s_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and the line $\mathbf{r_2} = s_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} \frac{1}{3} \\ 0 \end{pmatrix}$. [3]

(b) The plane
$$3x + y = 25$$
 and the line $\boldsymbol{r} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} s.$ [4]

- 14. Calculate the angle between the following vectors. Give you answers in *degrees* to two decimal places where necessary:
 - (a) $3\mathbf{i} + 2\mathbf{j}$ and $3\mathbf{i}$. [2]
 - (b) 2i + 7j + k and i + j + 3k. [2]

(c)
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 2\\3\\1 \end{pmatrix}$.

(d)
$$\begin{pmatrix} 3\\1\\2 \end{pmatrix}$$
 and $\begin{pmatrix} -2\\2\\-2 \end{pmatrix}$.
[2]

- 15. Calculate the angle between the following planes. Give you answers in *degrees* to two decimal places where necessary:
 - (a) 2x + y + z = 4 and 3x 2y z = 16. [2]
 - (b) 3x + y + 2z = 8 and -2x + 2y + 2z = 4. [2]

Turn over

16. You are given that the points A, B, C all lie in a plane, where $\overrightarrow{OA} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 2\\2\\1 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 3\\3\\2 \end{pmatrix}$.

(a)	Calculate \overrightarrow{AB} and \overrightarrow{AC} .	[2]
(b)	Hence, or otherwise calculate the <i>unit</i> normal vector to the plane containing A, B and C .	[3]
(c)	Find the equation of the plane in <i>cartesian</i> form.	[3]
(d)	Does the point $\begin{pmatrix} 3\\3\\2 \end{pmatrix}$ lie on the plane?	[1]
(e)	Does the point $\begin{pmatrix} 1\\1\\5 \end{pmatrix}$ lie on the plane?	[1]
(f)	Does the point $\begin{pmatrix} 1\\2\\0 \end{pmatrix}$ lie on the plane?	[1]