AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C4 Vectors

Name:

Mathsmadeeasy.co.uk

Total Marks: /107

C4 - Vectors (Answers) MEI, OCR, AQA, Edexcel

1.	. State whether each of the following quantities are scalars or vectors. For parts g) and h), you are given that a and b are vectors:	
	(a) Vector.	[1
	(b) Scalar.	[1
	(c) Vector.	[1
	(d) Vector.	[1
	(e) Vector.(f) Scalar.	[1 [1
	(g) Scalar.	[1
	(h) Vector.	[1
2.	Simplify the following expressions:	
	(a) $\begin{pmatrix} 2\\8\\4 \end{pmatrix}$.	[1
	(b) $\begin{pmatrix} 4\\4\\6 \end{pmatrix}$.	[1
	(c) $8i + 10j$.	[1
	(d) $12i + 6j$.	[1
3.	Evaluate the following expressions:	
	(a) $\sqrt{2}$.	[2
	(b) 5.	[2
	(c) 68.	[2
	(d) 2.	[3

- 4. Calculate each of the scalar (dot) products below. Also specify whether the vectors are orthogonal to one another or not:
 - (a) 3. They are *not* orthogonal. [2]
 - (b) 0. They are orthogonal. [2]
 - (c) -19. They are *not* orthogonal. [2]
 - (d) 0. They are orthogonal. [2]
 - (e) $5 + \sqrt{3}$. They are *not* orthogonal. [2]
- 5. Find the distance between the following lines and the location of the mid point between them:

(a) Distance =
$$\sqrt{5}$$
, Midpoint = $\begin{pmatrix} \frac{3}{2} \\ 1 \\ 2 \end{pmatrix}$. [3]

Distance =
$$3\sqrt{3}$$
, Midpoint = $\frac{1}{2} \begin{pmatrix} 7 \\ 3 \\ 7 \end{pmatrix}$. [3]

Distance =
$$\sqrt{86}$$
, Midpoint = $\frac{1}{2} \begin{pmatrix} 7 \\ -6 \\ 1 \end{pmatrix}$. [3]

6. Consider the position vectors $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ 6 \\ 1 \end{pmatrix}$:

(a)
$$\sqrt{17}$$
. [3]

(b)
$$\frac{1}{5} \begin{pmatrix} 7 \\ 18 \\ 5 \end{pmatrix}$$
. [3]

7. Write the equation of the line through $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ in the direction $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ in:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
. [1]

(b)
$$x-1=\frac{y-1}{2}=z-1$$
.

8. Consider two points, $A = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
. [2]

(b)
$$x - 1 = \frac{2 - y}{2} = \frac{z - 2}{2}$$
. [3]

9. Write the following equations of lines in vector form:

(a)
$$\mathbf{r} = s \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
. [2]

(b)
$$\mathbf{r} = \frac{1}{3} \left[s \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right].$$
 [2]

(c)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} s.$$
 [3]

10. Find the equation of the following planes in vector form:

(a)
$$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$$
. [1]

(b)
$$\mathbf{r} = s \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$
. You may have a different answer. Vector forms aren't unique. [2]

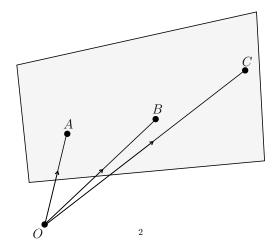
11.	Find the equation of the following planes in <i>cartesian form</i> :	
	(a) $x = 1$.	[3]
	(b) $3x + 2z = 5$.	[3]
10	Challenger for 20 10 10 49	[6]
12.	Challange: $6x - 3y + 10z = 48$.	[6]

13. Find the points of intersection between the following lines/planes: (a) (-1, -2).

(b)
$$(\frac{50}{7}, \frac{25}{7})$$
. [4]

14. Calculate the angle between the following vectors. Give you answers in *degrees* to two decimal places where necessary:

(b)
$$60.50^{\circ}$$
. [2]


15. Calculate the angle between the following planes. Give you answers in *degrees* to two decimal places where necessary:

(a)
$$70.89^{\circ}$$
. [2]

Turn over

[3]

16. You are given that the points A, B, C all lie in a plane, where $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}$.

(a)
$$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$. [2]

(b)
$$n = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
. [3]

(c)
$$y = x$$
. [3]