AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C4 Vectors

Name:

M E
 Mathsmadeeasy.co.uk

Total Marks: /107

C4 - Vectors (Answers)
MEI, OCR, AQA, Edexcel

1. State whether each of the following quantities are scalars or vectors. For parts g) and h), you are given that \boldsymbol{a} and \boldsymbol{b} are vectors:
(a) Vector.
(b) Scalar.
(c) Vector.
(d) Vector.
(e) Vector.
(f) Scalar.
(g) Scalar.
(h) Vector.
2. Simplify the following expressions:
(a) $\left(\begin{array}{l}2 \\ 8 \\ 4\end{array}\right)$.
(b) $\left(\begin{array}{l}4 \\ 4 \\ 6\end{array}\right)$.
(c) $8 \boldsymbol{i}+10 \boldsymbol{j}$.
(d) $12 \boldsymbol{i}+6 \boldsymbol{j}$.
3. Evaluate the following expressions:
(a) $\sqrt{2}$.
(b) 5 .
(c) 68 .
(d) 2 .
4. Calculate each of the scalar (dot) products below. Also specify whether the vectors are orthogonal to one another or not:
(a) 3. They are not orthogonal.
(b) 0. They are orthogonal.
(c) -19. They are not orthogonal.
(d) 0 . They are orthogonal.
(e) $5+\sqrt{3}$. They are not orthogonal.
5. Find the distance between the following lines and the location of the mid point between them:
(a) Distance $=\sqrt{5}$, Midpoint $=\left(\begin{array}{l}\frac{3}{2} \\ 1 \\ 2\end{array}\right)$.

Distance $=3 \sqrt{3}$, Midpoint $=\frac{1}{2}\left(\begin{array}{l}7 \\ 3 \\ 7\end{array}\right)$.
Distance $=\sqrt{86}$, Midpoint $=\frac{1}{2}\left(\begin{array}{c}7 \\ -6 \\ 1\end{array}\right)$.
6. Consider the position vectors $\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{l}2 \\ 6 \\ 1\end{array}\right)$:
(a) $\sqrt{17}$.
(b) $\frac{1}{5}\left(\begin{array}{c}7 \\ 18 \\ 5\end{array}\right)$.
7. Write the equation of the line through $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ in the direction $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ in:
(a) $\boldsymbol{r}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+s\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
(b) $x-1=\frac{y-1}{2}=z-1$.
8. Consider two points, $A=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ and $B=\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)$:
(a) $\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)+s\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$.
(b) $x-1=\frac{2-y}{2}=\frac{z-2}{2}$.
9. Write the following equations of lines in vector form:
(a) $\boldsymbol{r}=s\binom{2}{1}$.
(b) $\boldsymbol{r}=\frac{1}{3}\left[s\binom{1}{3}-\binom{1}{0}\right]$.
(c) $\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right) s$.
10. Find the equation of the following planes in vector form:
(a) $\boldsymbol{r}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+s\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)+t\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$.
(b) $\boldsymbol{r}=s\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+t\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) . \quad$ You may have a different answer. Vector forms aren't unique.
11. Find the equation of the following planes in cartesian form:
(a) $x=1$.
(b) $3 x+2 z=5$.
12. Challange: $6 x-3 y+10 z=48$.
13. Find the points of intersection between the following lines/planes:
(a) $(-1,-2)$.
(b) $\left(\frac{50}{7}, \frac{25}{7}\right)$.
14. Calculate the angle between the following vectors. Give you answers in degrees to two decimal places where necessary:
(a) 33.69°.
(b) 60.50°.
(c) 19.11°.
(d) 128.11°.
15. Calculate the angle between the following planes. Give you answers in degrees to two decimal places where necessary:
(a) 70.89°.
(b) 90°.
16. You are given that the points A, B, C all lie in a plane, where $\overrightarrow{O A}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$ and $\overrightarrow{O C}=\left(\begin{array}{l}3 \\ 3 \\ 2\end{array}\right)$.

(a) $\overrightarrow{A B}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$.
(b) $\boldsymbol{n}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
(c) $y=x$.
(d) Yes.
(e) Yes.
(f) No.

