AQA, Edexcel, OCR, MEI

A Level

A Level Mathematics

C4 Trigonometry

Name:

M E
 Mathsmadeeasy.co.uk

Total Marks: /59

```
                        C4 - Trigonometry
MEI, OCR, AQA, Edexcel
```

1. Consider the well-known trigonometric identity:

$$
\sin ^{2} x+\cos ^{2} x=1 .
$$

(a) By manipulating the above identity, show that $\tan ^{2} x+1=\sec ^{2} x$.
(b) Using the same technique used in part a) come up with a similar identity involving $\cot x$ and $\operatorname{cosec} x$.
2. Simplify the following trig expressions:
(a) $\sin x \cos y+\cos x \sin y$.
(b) $1-2 \sin ^{2} x$.
(c) $2 \sin x \cos x$.
(d) $\frac{1}{\cos ^{2} x}-1$.
(e) $16 \sin ^{2} x \cos ^{2} x$.
(f) $\sin x \cos (2 x)+2 \sin x \cos ^{2} x$.
(g) $\cos ^{4} x-\frac{1}{2} \sin ^{2}(2 x)+\sin ^{4} x$.
3. Write the following expressions in the form $R \sin (x+\alpha)$:
(a) $2 \sin x+2 \sqrt{3} \cos x$.
(b) $\frac{3}{\sqrt{2}}(\sin x+\cos x)$.
4. The positive double angle formulas for sine and cosine are given by:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B
\end{aligned}
$$

(a) Using the identities above, prove that:

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

(b) Hence show that:

$$
\tan (2 A)=\frac{2 \tan A}{1-\tan ^{2} A}
$$

5. Solve the following trigonometric equations for x values in the range $-\pi \leq x \leq \pi$:
(a) $\tan ^{2} x=1$.
(b) $\sec ^{2} x=2$.
(c) $\cos (2 x)=\frac{\sqrt{3}}{2}$.
(d) $\cos ^{4} x-2 \sin ^{2} x \cos ^{2} x+\sin ^{4} x=\frac{1}{2}$.
(e) $\frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x=1$.
(f) $\frac{1}{1-\tan x}-\frac{1}{1+\tan x}=1$.
6. Consider the function $f(x)=\frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x$:
(a) Write $f(x)$ in the form $f(x)=R \cos (x+\alpha)$, where R and α are constants to be determined.
(b) Sketch the graph of $f(x)$ in the range $0 \leq x \leq 2 \pi$.
