

C4 - Calculus MEI, OCR, AQA, Edexcel

1. Evaluate the following integrals by expressing the integrand in partial fractions. *Remember to include a constant of integration*:

(a) $\int \frac{1}{(x+1)(x+2)} dx.$	[3]
(b) $\int \frac{x}{(x+1)(x+3)} dx.$	[3]
(c) $\int \frac{x^2}{(x+1)(x+2)} dx.$	[3]
(d) $\int \frac{1}{(x+1)(x+2)(x+3)} dx.$	[3]
(e) $\int \frac{x^3}{(x-4)(x+2)} dx.$	[4]
(f) $\int \frac{2x}{(x-1)^2(x+4)} dx.$	[4]

2. Find the volumes of the solids generated by revolving the following functions around the x axis:

(a) $y = x^2$, $0 \le x \le 2$.	[2]
(b) $y = x^2 + 2x + 1$, $0 \le x \le 2$.	[2]
(c) $y = \sqrt{\sin x \cos x}, \qquad 0 \le x \le \frac{\pi}{2}.$	[3]
(d) $y = e^{2x}$, $0 \le x \le 1$.	[2]
(e) $y = \frac{3}{1-x}, \qquad -2 \le x \le 0.$	[3]

3. Find the volumes of the solids generated by revolving the following functions around the y axis:

(a) $y = \frac{x}{2}, \qquad 0 \le y \le 2.$	[2]
(b) $y = \sin^{-1} x$, $0 \le y \le \frac{\pi}{2}$.	[2]
(c) $y = \frac{1}{x}, \qquad 1 \le y \le 2.$	[2]
(d) $y = \frac{1}{2} \ln x$, $0 \le y \le 1$.	[3]

4. The gradient function of a function y(x) is given by 2x:

(a) Write the information above as a first order differential equation.	[2]
(b) Find the general solution of the ODE in your answer to part a).	[2]

- (c) Give the solution of the ODE that satisfies the condition y(1) = 3. [1]
- 5. Consider the function $y = \sin x + x$:

(a) Write down an ODE that satisfies the above equation.	[2]

- (b) Find the general solution of the ODE by integrating your answer to part a). [2]
- 6. You are given that $\frac{dx}{dt} = \frac{1}{2\sqrt{t}}$ and $\frac{dy}{dt} = 2t$, for some parametric equations x(t) and y(t):
 - (a) Using the fact that $x(t) = \sqrt{t}$, find an ODE involving x and y only. *Hint:* $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{1}{\frac{dw}{dt}}$. [4]
 - (b) Find the general solution of the ODE in your answer to part a). [2]

7. Solve the following differential equations:

(a)	$\frac{dy}{dx} = 4x.$	[2]
(b)	$\frac{dy}{dx} = \cos x.$	[2]
(c)	$\frac{dy}{dx} = 2xe^{x^2}.$	[2]
(d)	$\frac{dy}{dx} = x^2 y.$	[3]

- (e) $\frac{dy}{dx} = \frac{y}{x} + y.$ [3]
- 8. Consider the ODE $\frac{dy}{dx} = -\frac{x}{y}$:

(a) Find the general solution to this ODE.	[4]
(b) Give the exact solution satisfying $y(2) = 0$.	[2]
(c) What does your solution to part b) give the equation of geometrically?	[1]